Skip to main content

Advertisement

Log in

Preparation of Iron Bonded Tungsten Carbide–Titanium Carbide Composites with Improved Microstructure for Designing Various Harder Components

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Tungsten carbide/titanium carbide/iron composites (diameter 4.5-5 cm) in 0.5-kilogram scale were prepared using the argon arc plasma melting method. The composites were observed with a well-ordered crystalline structure. The microhardness and Young’s modulus values of different composites were found to vary in the range of 2018-4380 VHN and 590-789 GPa, respectively. In this work, the iron bonded (5 wt.%) with tungsten carbide–titanium carbide (8 wt.%) composite shows the highest microhardness and Young’s modulus values of 4380 VHN and 789 GPa, respectively. The typical WC + TiC 8 wt.% + Fe 5 wt.% composite showed significantly high bending strength and fracture toughness values of 2050 ± 48 MPa and 12.8 ± 1.2 MPa m1/2, respectively. This composite showed improved microstructure with reduced defects as compared to melt-cast pure WC and WC + TiC 8 wt.% composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Wu, Y. Yang, D. Gu, Q. Li, D. Feng, Z. Che, Tu. Bo, P.A. Webley and D. Zhao, Silica-Templated Synthesis of Ordered Mesoporous Tungsten Carbide/Graphitic Carbon Composites with Nanocrystalline Walls and High Surface Areas via a Temperature-Programmed Carburization Route, Small, 2009, 23, p 2738–2749.

    Article  Google Scholar 

  2. J. Sun, J. Zhao, Z. Huang, K. Yan, X. Shen, J. Xing, Y. Gao, Y. Jian, H. Yang and B. Li, A Review on Binderless Tungsten Carbide: Development and Application, Nano Micro. Lett., 2020, 12, p 1–37.

    Article  CAS  Google Scholar 

  3. G. Jiang, H. Zhuang and W. Li, Combustion Synthesis of Tungsten Carbides under Electric Field I Field Activated Combustion Synthesis, Ceram. Int., 2004, 30, p 185–190.

    Article  CAS  Google Scholar 

  4. M. Samodurova, N. Shaburova, O. Samoilova, A.O. Moghaddam, K. Pashkeev, V. Ulyanitckiy and E. Trofimov, Properties of WC-10%Co-4%Cr Detonation Spray Coating Deposited on the Al-4%Cu-1% Mg Alloy, Materials, 2021, 14, p 1–11.

    Article  Google Scholar 

  5. L. Toth, Transition Metal Carbides and Nitrides, Academic Press, New York, 1971.

    Google Scholar 

  6. H.H. Hwu and J.G. Chen, Surface Chemistry of Transition Metal Carbides, Chem. Rev., 2005, 105, p 185–212.

    Article  CAS  PubMed  Google Scholar 

  7. A. Mukhopadhyay and B. Basu, Recent Developments on WC-Based Bulk Composites, J. Mater. Sci., 2011, 46, p 571–589.

    Article  CAS  Google Scholar 

  8. T. Dash and B.B. Nayak, Preparation of WC-W2C Composites by Arc Plasma Melting and Their Characterisations, Ceram. Int., 2013, 39, p 3279–3292.

    Article  CAS  Google Scholar 

  9. N. Nayak, T. Dash, D. Debasish, B.B. Palei, T.K. Rout, S. Bajpai and B.B. Nayak, A Novel WC-W2C Composite Synthesis by Arc Plasma Melt Cast Technique: Microstructural and Mechanical Studies, SN Appl. Sci., 2021, 3, p 1–8.

    Article  Google Scholar 

  10. S.W.H. Yih and C.T. Wang, Tungsten Sources, Metallurgy and Applications, Plenum Press, New York, 1981, p 387

    Google Scholar 

  11. F.A.C. Oliveira, B. Granier, J.M. Badie, J.C. Fernandes, L.G. Rosa and N. Shohoji, Synthesis of Tungsten Sub-Carbide W2C from Graphite/Tungsten Powder Mixtures by Eruptive Heating in a Solar Furnace, Int. J. Refract. Met. Hard. Mater., 2007, 25, p 351–357.

    Article  CAS  Google Scholar 

  12. M. Khechba, F. Hanini and R. Halimi, Study of Structural and Mechanical Properties of Tungsten Carbides Coatings, Nat. Technol. Rev., 2011, 5, p 9–11.

    Google Scholar 

  13. E. Zeiler, S. Schwarz, S.M. Rosiwal and R.F. Singer, Structural Changes of Tungsten Heating Filaments during CVD of Diamond, Mater. Sci. Eng., 2002, 335, p 236–245.

    Article  Google Scholar 

  14. J. Deng, J. Zhou, Y. Feng and Z. Ding, Microstructure and Mechanical Properties of Hot-Pressed B4C/(W, Ti)C Ceramic Composites, Ceram. Int., 2002, 28, p 425–430.

    Article  CAS  Google Scholar 

  15. H.C. Kim, D.K. Kim, I.Y. Ko and I.J. Shon, Sintering Behaviour and Mechanical Properties of Binderless WC-TiC Produced by Pulsed Current Activated Sintering, J. Ceram. Process., 2007, 8, p 91–97.

    Google Scholar 

  16. H.C. Kim, D.K. Kim, K.D. Woo, I.Y. Ko and I.J. Shon, Consolidation of Binderless WC-TiC by High Frequency Induction Heating Sintering, Int. J. Refract. Met. Hard. Mater., 2008, 26, p 48–54.

    Article  CAS  Google Scholar 

  17. B.M. Moshtaghioun, F.L. Cumbrera, A.L. Ortiz, M. Castillo-Rodríguez and D. Gómez-García, Additive-Free Superhard B4C with Ultrafine-Grained Dense Microstructures, Eur. J. Eur. Ceram. Soc., 2014, 34, p 841–848.

    Article  CAS  Google Scholar 

  18. B.G. Hong, Y.S. Hwang, J.S. Kang, D.W. Lee, H.G. Joo and M. Ono, Conceptual Design Study of a Superconducting Spherical Tokamak Reactor with a Self-Consistent System Analysis Code, Nucl. Fusion, 2011, 51, p 1–6.

    Article  Google Scholar 

  19. G.M. Song, Y. Zhou and Y.J. Wang, The Microstructure and Elevated Temperature Strength of Tungsten-Titanium Carbide Composite, J. Mater. Sci., 2002, 37, p 3541–3548.

    Article  CAS  Google Scholar 

  20. B. Haldar, D. Bandyopadhyay, R.C. Sharma and N. Chakraborti, The Ti-W-C (Titanium-Tungsten-Carbon) System, J. Phase Equilib., 1999, 20, p 337–343.

    Article  CAS  Google Scholar 

  21. A.G. Metcalfe, The Mutual Solid Solubility of Tungsten Carbide and Titanium Carbide, J. Inst. Met., 1947, 173, p 591–607.

    Google Scholar 

  22. E. Rudy, Constitution of Ternary Titanium-Tungsten-Carbon Alloys, J. Less-Common Met., 1973, 33, p 245–273.

    Article  CAS  Google Scholar 

  23. S. Jonsson, Assessment of the Ti-W-C System and Calculations in the Ti-W-C-N System, IJMR, 1996, 87, p 788–795.

    Article  CAS  Google Scholar 

  24. K.H. Lee, S.I. Cha, B.K. Kim and S.H. Hong, Effect of WC/TiC Grain Size Ratio on Microstructure and Mechanical Properties of WC-TiC-Co Cemented Carbides, Int. J. Refract. Met. Hard. Mater., 2006, 24, p 109–114.

    Article  Google Scholar 

  25. T. Dash and B.B. Nayak, Tungsten Carbide-Titanium Carbide Composite and its Characterization, Ceram. Int., 2019, 45, p 4771–4780.

    Article  CAS  Google Scholar 

  26. J.J. Pittari III., H.A. Murdoch, S.M. Kilczewski, B.C. Hornbuckle, J.J. Swab, K.A. Darling and J.C. Wright, Sintering of Tungsten Carbide Cermets with an Iron-based Ternary Alloy Binder: Processing and Thermodynamic Considerations, Int. J. Refract. Hard. Met., 2018, 76, p 1–11.

    Article  CAS  Google Scholar 

  27. B.B. Nayak, R.K. Sahu, T. Dash and S. Pradhan, Growth of Carbon Nanotubes in Arc Plasma-Treated Graphite Disc: Microstructural Characterization and Electrical Conductivity study, Appl. Phys. A, 2018, 124, p 220.

    Article  Google Scholar 

  28. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564–1583.

    Article  CAS  Google Scholar 

  29. D.K. Shetty, I.G. Wright, P.N. Mincer and A.H. Clauer, Indentation Fracture of WC-Co Cermets, J. Mater. Sci., 1985, 20, p 1873–1882.

    Article  CAS  Google Scholar 

  30. V.Z. Kublii, T.Y. Velikanova, O.A. Gnitetskii and S.I. Makhovitiskaya, Structural Parameters of the Low-Temperature Metastable Form of the Carbide W2C, Powder Metall. Metal Ceram., 2000, 39, p 151–156.

    Article  CAS  Google Scholar 

  31. B.H. Kear and W.E. Mayo, Thermal Sprayed Nanostructured Hard Coatings, Nanostructured Films and Coatings. Springer Netherlands, Dordrecht, 2000, p 113–129. https://doi.org/10.1007/978-94-011-4052-2_10

    Chapter  Google Scholar 

  32. H. Yan, P. Zhang, Z. Yu, C. Li and R. Li, Development and Characterization of Laser Surface Cladding (Ti, W) C Reinforced Ni-30Cu Alloy Composite Coating on Copper, Opt. Laser Technol., 2012, 44, p 1351–1358.

    Article  CAS  Google Scholar 

  33. J. Ren, X.B. Liu, X.L. Lu, P.C. Yu, G.X. Zhu, Y. Chen and D. Xu, Microstructure and Tribological Properties of Self-Lubricating Antiwear Composite Coating on Ti6Al4 V Alloy, Surf. Eng., 2017, 33, p 20–26.

    Article  CAS  Google Scholar 

  34. A.S. Kurlov and A.I. Gusev, Tungsten Carbides and W-C Phase Diagram, Inorg. Mater., 2006, 42, p 121–127.

    Article  CAS  Google Scholar 

  35. A.S. Kurlov and A.I. Gusev, Neutron and x-ray Diffraction Study and Symmetry Analysis of Phase Transformations in Lower Tungsten Carbide W2C, Phys. Rev. B, 2007, 76, p 174115.

    Article  Google Scholar 

  36. B. Heryanto, D.T. Abdullah and Mahdalia, Quantitative Analysis of x-ray Diffraction Spectra for Determine Structural Properties and Deformation Energy of Al, Cu and Si, J. Phys. Conf. Series, 2019, 1317, p 1–012052. https://doi.org/10.1088/1742-6596/1317/1/012052

    Article  CAS  Google Scholar 

  37. W. Sabuga, Proceedings of the 17th Int. Conf. (Force, Mass, Torque and Pressure Measurements), IMEKO TC3, Istanbul, Turkey, 2001, p 17-21.

  38. J. Sun, Y. Chen, P. Zhai, Y. Zhou, J. Zhao and Z. Huang, Tribological Performance of Binderless Tungsten Carbide Reinforced by Multilayer Graphene and SiC Whisker, J. Eur. Ceram. Soc., 2022, 42, p 4817–4824.

    Article  CAS  Google Scholar 

  39. H.T. Kim, J.S. Kim, and Y.S. Kwon, Mechanical Properties of Binderless Tungsten Carbide by Spark Plasma Sintering. In: Proceedings of the 9th Russian-Korean International Symposium on Science and Technology 2005 KORUS 2005 Novosibirsk, Russia, 2005 p 458–461 https://doi.org/10.1109/KORUS.2005.1507757

  40. J.J. Swab and J. Tice, Evaluation of Tungsten Carbide (WC) for Armor Applications, Report number: ARL TR-3523, FMTR-1827-2003-35-001-05, U.S. Army Research Laboratory Aberdeen Proving Ground, 2005, p 21005–25066

    Google Scholar 

  41. X. Lyu, X. Jiang, H. Sun and Z. Shao, Microstructure and Mechanical Properties of WC-Ni Multiphase Ceramic Materials with NiCl2·6H2O as a binder, Nanotechnol. Rev., 2020, 9, p 543–557.

    Article  CAS  Google Scholar 

  42. W. Acchara, C. Zollfrank and P. Greil, Microstructure and Mechanical Properties of WC-Co Reinforced with NbC, Mater. Res., 2004, 7, p 445–450.

    Article  Google Scholar 

  43. P.S. Kopf and R. Kieffer, Cemented Carbides, The Macmillan Company, 1960, p 188–198

    Google Scholar 

  44. W.D. Schubert, A. Bock and B. Lux, General Aspects and Limits of Conventional Ultrafine WC Powder Manufacture and Hard Metal Production, Int. J. Refract. Met. Hard Mater, 1995, 13, p 281–296.

    Article  CAS  Google Scholar 

  45. S.K. Bhaumik, R. Balasubramaniam, G.S. Upadhyaya and M.L. Vaidya, Oxidation Behavior of Hard and Binder Phase Modified WC-10 Co Cemented Carbides, J. Mater. Sci. Lett., 1992, 11, p 1457–1459.

    Article  CAS  Google Scholar 

  46. Y.T. Zhu and A. Manthiran, A New Route for the Synthesis of Tungsten Carbide-Cobalt Nanocomposites, J. Amer. Ceram. Soc., 1994, 77, p 2777–2778.

    Article  CAS  Google Scholar 

  47. M. Leiderman, and O.A.R. Botstein, Proceeding of the 4th European Conference on Advanced Materials and Process, Italy, (1995).

  48. R. Sepulveda and F. Arenas, TiC-VC-Co: A Study on its Sintering and Microstructure, Inter. J. Refract. & Hard Mater., 2001, 19, p 389–396.

    Article  CAS  Google Scholar 

  49. W. Acchar and J.L. Fonseca, Sintering Behavior of Alumina Reinforced with (Ti, W) Carbides, Mater. Sci. Eng. A, 2004, 2004(371), p 382–387.

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. Surendra Kumar Biswal, the CEO & MD of Tirupati Graphene & Mintech Research Centre, Bhubaneswar, Odisha, India, and Prof. Supriya Pattanayak, the VC of Centurion University of Technology and Management, Odisha, India for their encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Dash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited submission to the Journal of Materials Engineering and Performance selected from presentations at the 4th International Conference on Processing & Characterization of Materials (ICPCM 2022) held December 9–11, 2022, at the National Institute of Technology, Rourkela, Odisha, India. It has been expanded from the original presentation. The issue was organized by Prof. Joao Pedro Oliveira, Universidade NOVA de Lisboa, Portugal; Prof. B. Venkata Manoj Kumar, Indian Institute of Technology Roorkee, India; Dr. D. Arvindha Babu, DMRL, DRDO, Hyderabad, India; Prof. Kumud Kant Mehta and Prof. Anshuman Patra, National Institute of Technology Rourkela, Odisha, India; and Prof. Manab Mallik, National Institute of Technology Durgapur, India.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moharana, R.K., Dash, T. & Rout, T.K. Preparation of Iron Bonded Tungsten Carbide–Titanium Carbide Composites with Improved Microstructure for Designing Various Harder Components. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09341-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09341-6

Keywords

Navigation