Skip to main content

Advertisement

Log in

The Effect of Load, Diameter Ratio, and Friction Coefficient on Residual Stress in a Hemispherical Contact for Application in Biomedical Industry

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In contact mechanics analysis, load, deformation, friction, and residual stress are important variables that need to be considered to understand the behavior of materials under contact for application in biomedical industry. This study investigated the effect of load, diameter ratio, and friction coefficient on the contact behavior between two hemispheres of equal hardness. The finite element method (FEM) used in this study incorporated variations in load (2500 N, 5000 N, and 8000 N) and friction coefficient (0, 0.05, 0.1, 0.4, 0.8) to detect the impact of these factors on residual stress and deformation springback in the diameter ratio ranging from 1 to 5. The upper hemisphere had a constant diameter, while the diameter of the bottom hemisphere was varied according to the chosen diameter ratio. The results showed that an increase in the diameter ratio caused a decrease in the deformation ratio, indicating that smaller hemispheres experienced an increase in deformation. The study also found that the model showing springback will decrease with increasing load and diameter ratio. The load and diameter ratio affected the springback and residual stress of the hemispheres. Large loads led to reduced springback and high residual stress. Higher diameter ratios resulted in lower springback and wider residual stress distribution in the bottom hemisphere and reduced residual stress distribution in the upper hemisphere. The friction coefficient also affected the residual stress distribution. Therefore, appropriate load, diameter ratio, and friction coefficient selection are crucial factors for producing high-quality products in biomedical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Shaikh, B.S. Shenoy, N.S. Bhat, and S. Shetty, Wear Estimation at the Contact Surfaces of Oval Shaped Hip Implants Using Finite Element Analysis, Cogent Eng., 2023, 10(1), p 2222985. https://doi.org/10.1080/23311916.2023.2222985

    Article  Google Scholar 

  2. H. Hertz, Ueber Die Berührung Fester Elastischer Körper, J. Reine Angew. Math., 1882, 1882(92), p 156–171.

    Article  Google Scholar 

  3. W.R. Chang, I. Etsion, and D.B. Bogy, An Elastic-Plastic Model for the Contact of Rough Surfaces, J. Tribol., 1987, 109(2), p 257–263. https://doi.org/10.1115/1.3261348

    Article  Google Scholar 

  4. Y. Zhao, D.M. Maietta, and L. Chang, An Asperity Microcontact Model Incorporating the Transition from Elastic Deformation to Fully Plastic Flow, J. Tribol., 2000, 122(1), p 86–93. https://doi.org/10.1115/1.555332

    Article  Google Scholar 

  5. L. Kogut and I. Etsion, Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat, J. Appl. Mech. Trans. ASME, 2002, 69(5), p 657–662. https://doi.org/10.1115/1.1490373

    Article  Google Scholar 

  6. R.L. Jackson and I. Green, A Finite Element Study of Elasto-Plastic Hemispherical Contact against a Rigid Flat, J. Tribol., 2005, 127(2), p 343–354. https://doi.org/10.1115/1.1866166

    Article  Google Scholar 

  7. S. Shankar and M.M. Mayuram, Effect of Strain Hardening in Elastic-Plastic Transition Behavior in a Hemisphere in Contact with a Rigid Flat, Int. J. Solids Struct., 2008, 45(10), p 3009–3020. https://doi.org/10.1016/j.ijsolstr.2008.01.017

    Article  Google Scholar 

  8. M.R. Brake, An Analytical Elastic-Perfectly Plastic Contact Model, Int. J. Solids Struct., 2012, 49(22), p 3129–3141. https://doi.org/10.1016/j.ijsolstr.2012.06.013

    Article  Google Scholar 

  9. J. Jamari and D.J. Schipper, Deterministic Repeated Contact of Rough Surfaces, Wear, 2008, 264(3–4), p 349–358. https://doi.org/10.1016/j.wear.2007.03.024

    Article  CAS  Google Scholar 

  10. B. Zhou, H. Cui, H. Liu, Y. Li, G. Liu, S. Li, and S. Zhang, Experimental Investigation and Finite Element Analysis on Fatigue Behavior of Aluminum Alloy 7050 Single-Lap Joints, J. Mater. Eng. Perform., 2018, 27(3), p 915–923. https://doi.org/10.1007/s11665-018-3137-9

    Article  CAS  Google Scholar 

  11. G. Vastola, G. Zhang, Q.X. Pei, and Y.W. Zhang, Controlling of Residual Stress in Additive Manufacturing of Ti6Al4V by Finite Element Modeling, Addit. Manuf., 2016, 12, p 231–239. https://doi.org/10.1016/j.addma.2016.05.010

    Article  CAS  Google Scholar 

  12. C.R. Liu and X. Yang, The Scatter of Surface Residual Stresses Produced by Face-Turning and Grinding, Mach. Sci. Technol., 2001, 5(1), p 1–21. https://doi.org/10.1081/MST-100103175

    Article  Google Scholar 

  13. X. Yang, C.R. Liu, and A.F. Grandt, An Experimental Study on Fatigue Life Variance, Residual Stress Variance, and Their Correlation of Face-Turned and Ground Ti 6Al-4V Samples, J. Manuf. Sci. Eng., 2002, 124(4), p 809–819. https://doi.org/10.1115/1.1511174

    Article  Google Scholar 

  14. K. Wang, Y. Wang, X. Yue, and W. Cai, Multiphysics Modeling and Uncertainty Quantification of Tribocorrosion in Aluminum Alloys, Corros. Sci., 2020, 2021(178), p 109095. https://doi.org/10.1016/j.corsci.2020.109095

    Article  CAS  Google Scholar 

  15. O. Iracheta, C.J. Bennett, and W. Sun, A Sensitivity Study of Parameters Affecting Residual Stress Predictions in Finite Element Modelling of the Inertia Friction Welding Process, Int. J. Solids Struct., 2015, 71, p 180–193. https://doi.org/10.1016/j.ijsolstr.2015.06.018

    Article  CAS  Google Scholar 

  16. J. Zhao, J. Tang, W. Zhou, T. Jiang, H. Liu, and B. Xing, Numerical Modeling and Experimental Verification of Residual Stress Distribution Evolution of 12Cr2Ni4A Steel Generated by Shot Peening, Surf. Coatings Technol., 2022, 430, p 127993. https://doi.org/10.1016/j.surfcoat.2021.127993

    Article  CAS  Google Scholar 

  17. K. Sherafatnia, G.H. Farrahi, A.H. Mahmoudi, and A. Ghasemi, Experimental Measurement and Analytical Determination of Shot Peening Residual Stresses Considering Friction and Real Unloading Behavior, Mater. Sci. Eng. A, 2016, 657, p 309–321. https://doi.org/10.1016/j.msea.2016.01.070

    Article  CAS  Google Scholar 

  18. F. Nazari, M. Honarpisheh, and H. Zhao, Effect of the Uncertainty of Multi-Cut Contour Method and Friction Coefficient on Residual Stresses of Constrained Groove Pressing Process, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2021, 235(11), p 2039–2052. https://doi.org/10.1177/0954406220948908

    Article  Google Scholar 

  19. R. Jackson, I. Chusoipin, and I. Green, A Finite Element Study of the Residual Stress and Deformation in Hemispherical Contacts, J. Tribol., 2005, 127(3), p 484–493. https://doi.org/10.1115/1.1843166

    Article  Google Scholar 

  20. T. Jana, A. Mitra, and P. Sahoo, Unloading Analysis of Elastically and Plastically Graded Hemispherical Contact with Rigid Flat, Tribol. Int., 2020, 142, p 105973. https://doi.org/10.1016/j.triboint.2019.105973

    Article  Google Scholar 

  21. Y. Kadin, Y. Kligerman, and I. Etsion, Multiple Loading-Unloading of an Elastic-Plastic Spherical Contact, Int. J. Solids Struct., 2006, 43(22–23), p 7119–7127. https://doi.org/10.1016/j.ijsolstr.2006.03.006

    Article  Google Scholar 

  22. Z. Song and K. Komvopoulos, An Elastic-Plastic Analysis of Spherical Indentation: Constitutive Equations for Single-Indentation Unloading and Development of Plasticity Due to Repeated Indentation, Mech. Mater., 2014, 76, p 93–101. https://doi.org/10.1016/j.mechmat.2014.05.005

    Article  Google Scholar 

  23. S. Zhou, X. Huang, W. Wu, and Y. Yang, Effect of Residual Stress in Surface Layer on Plastic Yield Inception, Appl. Sci., 2022, 12(22), p 11415. https://doi.org/10.3390/app122211415

    Article  CAS  Google Scholar 

  24. P. Chakraborty and S.B. Prasad-Vejendla, Deformation and Annealing of Brass, Mater. Today Proc., 2022, 64, p 1380–1383. https://doi.org/10.1016/j.matpr.2022.04.502

    Article  CAS  Google Scholar 

  25. D. Nocetti, K. Villalobos, N. Marín, M. Monardes, B. Tapia, M.I. Toledo, and C. Villegas, Radiation Dose Reduction and Image Quality Evaluation for Lateral Lumbar Spine Projection, Heliyon, 2023, 9(9), p 19509. https://doi.org/10.1016/j.heliyon.2023.e19509

    Article  Google Scholar 

  26. O.D. Gonçalves, M. Egito, C. Castro, S. Groisman, M. Basílio, and N.L. da Penha, About the Elemental Analysis of Dental Implants, Radiat. Phys. Chem., 2019, 154, p 53–57. https://doi.org/10.1016/j.radphyschem.2018.03.014

    Article  CAS  Google Scholar 

  27. B. van Straten, B. Tantuo, J. Dankelman, N.H. Sperna-Weiland, B.J. Boersma, and T. Horeman, Reprocessing Zamak Laryngoscope Blades into New Instrument Parts; an ‘All-in-One’ Experimental Study, Heliyon, 2022, 8(11), p 11711. https://doi.org/10.1016/j.heliyon.2022.e11711

    Article  Google Scholar 

  28. M.D.P. Lamura, T. Hidayat, M.I. Ammarullah, A.P. Bayuseno, and J. Jamari, Study of Contact Mechanics between Two Brass Solids in Various Diameter Ratios and Friction Coefficient, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2023 https://doi.org/10.1177/14657503221144810

    Article  Google Scholar 

  29. D. Sheng, K.D. Eigenbrod, and P. Wriggers, Finite Element Analysis of Pile Installation Using Large-Slip Frictional Contact, Comput. Geotech., 2005, 32, p 17–26. https://doi.org/10.1016/j.compgeo.2004.10.004

    Article  Google Scholar 

  30. L. Fratini, S. Lo-Casto, and E. Lo-Valvo, A Technical Note on an Experimental Device to Measure Friction Coefficient in Sheet Metal Forming, J. Mater. Process. Technol., 2006, 172(1), p 16–21. https://doi.org/10.1016/j.jmatprotec.2005.08.008

    Article  Google Scholar 

  31. B. Kaftanoglu, Determination of Coefficient of Friction Under Conditions of Deep-Drawing and Stretch Forming, Wear, 1973, 25(2), p 177–188. https://doi.org/10.1016/0043-1648(73)90070-7

    Article  Google Scholar 

  32. A.K. Ghosh, A Method for Determining the Coefficient of Friction in Punch Stretching of Sheet Metals, Int. J. Mech. Sci., 1977, 19(8), p 457–470. https://doi.org/10.1016/0020-7403(77)90019-4

    Article  Google Scholar 

  33. J.A. Bailey, Friction in Metal Machining-Mechanical Aspects, Wear, 1975, 31(2), p 243–275. https://doi.org/10.1016/0043-1648(75)90161-1

    Article  CAS  Google Scholar 

  34. S. Sulaiman, M.K.A.M. Ariffin, and S.Y. Lai, Springback Behaviour in Sheet Metal Forming for Automotive Door, AASRI Procedia, 2012, 3, p 224–229. https://doi.org/10.1016/j.aasri.2012.11.037

    Article  Google Scholar 

  35. S.A. Mohamad, A.M.E. Ahmed, and X. Lu, Influence of Macro-Scale Cylinder Liner Partial Surface Texturing on the Tribological Behavior of Two-Stroke Marine Diesel Engine Piston Ring, J Adv Res Fluid Mech Therm Sci, 2023, 101(2), p 111–120. https://doi.org/10.37934/arfmts.101.2.111120

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Culture, Research and Technology of the Republic of Indonesia through a scholarship of Master Education Program Leading to Doctoral Degree for Excellent Graduates (PMDSU) [Grant Number: 345-44/UN7.D2/PP/IV/2023].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jamari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical issue of the Journal of Materials Engineering and Performance on Residual Stress Analysis: Measurement, Effects, and Control. The issue was organized by Rajan Bhambroo, Tenneco, Inc.; Lesley Frame, University of Connecticut; Andrew Payzant, Oak Ridge National Laboratory; and James Pineault, Proto Manufacturing on behalf of the ASM Residual Stress Technical Committee.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamura, M.D.P., Ammarullah, M.I., Maula, M.I. et al. The Effect of Load, Diameter Ratio, and Friction Coefficient on Residual Stress in a Hemispherical Contact for Application in Biomedical Industry. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09330-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09330-9

Keywords

Navigation