Skip to main content

Advertisement

Log in

Microstructure and Wear Resistance of FeCoNiCr0.2B0.2 Alloy Prepared by Magnetic Field-Assisted Laser Cladding on Ti-6Al-4V Alloy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Based on the design concept of high-entropy alloy materials, this study prepared FeCoNiCr0.2B0.2 alloy on the surface of Ti-6Al-4V alloy by magnetic field-assisted laser cladding to improve the wear resistance performance of titanium alloy surfaces. The change in magnetic field intensity does not affect the phase composition of the alloy coating. The phase composition of the FeCoNiCr0.2B0.2 alloy coating mainly consists of FCC and BCC. The fine secondary α titanium phase was found in the magnetic field-assisted laser cladding coatings. The magnetic field reduces the crack sensitivity of the coatings. The wear resistance of a FeCoNiCr0.2B0.2 alloy coating is higher than that of the substrate. The FeCoNiCr0.2B0.2 alloy coating has the best mechanical properties and wear resistance when the magnetic field intensity is 30 mT. The nanohardness of the coating can reach 8.53 GPa. The friction coefficient, wear depth, and wear volume of the FeCoNiCr0.2B0.2 alloy coating are the smallest among all samples when the magnetic field intensity is 30 mT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K. Huang, K. Wu, S. Li et al., Microstructure and Properties Evaluation of Vacuum and Laser Cladding Ni-Base Composite Coatings, Appl. Phys. A, 2023, 129(2), p 161.

    Article  CAS  Google Scholar 

  2. S. Li and T. Yamaguchi, High-Temperature Oxidation Performance of Laser-Cladded Amorphous TiNiSiCrCoAl High-Entropy Alloy Coating on Ti-6Al-4V Surface, Surf. Coat. Technol., 2022, 433, 128123.

    Article  CAS  Google Scholar 

  3. C. Wang, J. Li, T. Wang et al., Microstructure and Properties of Pure Titanium Coating on Ti-6Al-4V Alloy by Laser Cladding, Surf. Coat. Technol., 2021, 416, 127137.

    Article  CAS  Google Scholar 

  4. X. Zeng, Z. Liu, G. Wu et al., Microstructure and High-Temperature Properties of Laser Cladded AlCoCrFeNiTi0.5 High-Entropy Coating on Ti 6Al-4V Alloy, Surf. Coat. Technol., 2021, 418, 127243.

    Article  CAS  Google Scholar 

  5. R.S. Haridas, P. Agrawal and R.S. Mishra, Modeling the Work Hardening Behavior in Metastable High Entropy Alloys, Mater. Sci. Eng. A, 2021, 823, 141778.

    Article  CAS  Google Scholar 

  6. A. Wetzel, M. von der Au, P.M. Dietrich et al., The Comparison of the Corrosion Behavior of the CrCoNi Medium Entropy Alloy and CrMnFeCoNi High Entropy Alloy, Appl. Surf. Sci., 2022, 601, 154171.

    Article  CAS  Google Scholar 

  7. X.J. Jiang, S.Z. Wang, H. Fu et al., A Novel High-Entropy Alloy Coating on Ti-6Al-4V Substrate by Laser Cladding, Mater. Lett., 2022, 308, 131131.

    Article  CAS  Google Scholar 

  8. Y. Feng, X. Pang, K. Feng et al., A Method for Evaluating the Crack Resistance and Predicting the Preheating Temperature of High Hardness Coating Prepared by Laser Cladding, Surf. Coat. Technol., 2022, 432, 128076.

    Article  CAS  Google Scholar 

  9. J. Choi and J. Mazumder, Non-Equilibrium Synthesis of Fe-Cr-CW Alloy by Laser Cladding, J. Mater. Sci., 1994, 29, p 4460–4476.

    Article  CAS  Google Scholar 

  10. M. Xie, Y. Zhang, X. Li et al., Effect of Si Element and TiB2 Nucleating Agent on Microstructure and Magnetic Properties of Cu-Based Immiscible Composites by Laser Melting Deposition, J. Alloys Compd., 2023, 934, 167938.

    Article  CAS  Google Scholar 

  11. Y. Liu, Y. Ding, L. Yang et al., Research and Progress of Laser Cladding on Engineering Alloys: A Review, J. Manuf. Process., 2021, 66, p 341–363.

    Article  Google Scholar 

  12. L.L. Zhai, C.Y. Ban and J.W. Zhang, Investigation on Laser Cladding Ni-Base Coating Assisted by Electromagnetic Field, Opt. Laser Technol., 2019, 114, p 81–88.

    Article  CAS  Google Scholar 

  13. T. Zhang, J. Zhou, J. Lv et al., A Novel Hybrid Ultrasonic and Electromagnetic Field Assisted Laser Cladding: Experimental Study and Synergistic Effects, J. Mater. Process. Technol., 2022, 307, 117658.

    Article  CAS  Google Scholar 

  14. G. Liang, G. Jin, X. Cui et al., Synthesis and Characterization of Directional Array TiN-Reinforced AlCoCrCuNiTi High-Entropy Alloy Coating by Magnetic-Field-Assisted Laser Cladding, J. Mater. Eng. Perform., 2021, 30, p 3568–3576.

    Article  CAS  Google Scholar 

  15. Z. Gao, L. Wang, Y. Wang et al., Crack Defects and Formation Mechanism of FeCoCrNi High Entropy Alloy Coating on TC4 Titanium Alloy Prepared by Laser Cladding, J. Alloys Compd., 2022, 903, 163905.

    Article  CAS  Google Scholar 

  16. S. Duan, X. Zhan, M. Wu et al., Analysis of Elements Non-uniform Distribution of FeCoCrNi High-Entropy Alloy Coatings on Ti–6Al–4V Surface by Laser Cladding, Met. Mater. Int., 2021, 27, p 467–480.

    Article  CAS  Google Scholar 

  17. X.D. Xu, S. Guo, T.G. Nieh et al., Effects of Mixing Enthalpy and Cooling Rate on Phase Formation of AlxCoCrCuFeNi High-Entropy Alloys, Materialia, 2019, 6, 100292.

    Article  CAS  Google Scholar 

  18. G.U.O. Sheng and C.T. Liu, Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase, Prog. Nat. Sci. Mater. Int., 2011, 21(6), p 433–446.

    Article  Google Scholar 

  19. S. Guo, C. Ng, J. Lu et al., Effect of Valence Electron Concentration on Stability of FCC or BCC Phase in High Entropy Alloys, J. Appl. Phys., 2011, 109, 103505.

    Article  Google Scholar 

  20. Y. Zhao, M. Lu, Z. Fan et al., Microstructures and Mechanical Properties of Wear-Resistant Titanium Oxide Coatings Deposited on Ti-6Al-4V Alloy Using Laser Cladding, J. Eur. Ceram. Soc., 2020, 40(3), p 798–810.

    Article  CAS  Google Scholar 

  21. Z. Liang, J. Miao, X. Huang et al., Kinetically Induced Fine Secondary α-Ti Phase Formation in a Novel As-Cast Titanium Alloy, Metall. Mater. Trans. A, 2022, 53(10), p 3536–3546.

    Article  CAS  Google Scholar 

  22. S.A. Uporov, R.E. Ryltsev, V.A. Bykov et al., Microstructure, Phase Formation and Physical Properties of AlCoCrFeNiMn High-Entropy Alloy, J. Alloys Compd., 2020, 820, 153228.

    Article  CAS  Google Scholar 

  23. S. Praveen and H.S. Kim, High-Entropy Alloys: Potential Candidates for High-Temperature Applications–An Overview, Adv. Eng. Mater., 2018, 20(1), p 1700645.

    Article  Google Scholar 

  24. K. Qi and L. Jiang, Magnetic Field-Assisted Laser Cladding of Cobalt-Based Alloy on 300 M Steel, JOM, 2023 https://doi.org/10.1007/s11837-023-06161-2

    Article  Google Scholar 

  25. B. Song, T. Hussain and K.T. Voisey, Laser Cladding of Ni50Cr: A Parametric and Dilution Study, Phys. Procedia, 2016, 83, p 706–715.

    Article  CAS  Google Scholar 

  26. J. DuttaMajumdar and L. Li, Development of Titanium Boride (TiB) Dispersed Titanium (Ti) Matrix Composite by Direct Laser Cladding, Mater. Lett., 2010, 64(9), p 1010–1012.

    Article  CAS  Google Scholar 

  27. S. Saroj, C.K. Sahoo and M. Masanta, Microstructure and Mechanical Performance of TiC-Inconel825 Composite Coating Deposited on AISI 304 Steel by TIG Cladding Process, J. Mater. Process. Technol., 2017, 249, p 490–501.

    Article  CAS  Google Scholar 

  28. S. Kumar, A. Mandal and A.K. Das, The Effect of Process Parameters and Characterization for the Laser Cladding of cBN Based Composite Clad Over the Ti6Al4V Alloy, Mater. Chem. Phys., 2022, 288, 126410.

    Article  CAS  Google Scholar 

  29. K. Qi, Y. Yang, R. Sun et al., Effect of Magnetic Field on Crack Control of Co-Based Alloy Laser Cladding, Opt. Laser Technol., 2021, 141, 107129.

    Article  CAS  Google Scholar 

  30. Y. Guan, X. Cui, D. Chen, et al. Microstructure and Properties Analysis of FeCoNiAlCu Dual-Phase High-Entropy Alloy Coating by Laser Cladding. Surf. Coat. Technol., 2023, 129695.

  31. Z. Zhao, J. Chen, S. Guo et al., Influence of α/β Interface Phase on the Tensile Properties of Laser Cladding Deposited Ti–6Al–4V Titanium Alloy, J. Mater. Sci. Technol., 2017, 33(7), p 675–681.

    Article  CAS  Google Scholar 

  32. B.D. Beake, V.M. Vishnyakov, R. Valizadeh et al., Influence of Mechanical Properties on the Nanoscratch Behaviour of Hard Nanocomposite TiN/Si3N4 Coatings on Si, J. Phys. D Appl. Phys., 2006, 39(7), p 1392.

    Article  CAS  Google Scholar 

  33. W. Cui, F. Niu, Y. Tan et al., Microstructure and Tribocorrosion Performance of Nanocrystalline TiN Graded Coating on Biomedical Titanium Alloy, Trans. Nonferrous Metals Soc. China, 2019, 29(5), p 1026–1035.

    Article  CAS  Google Scholar 

  34. Y. Hu, L. Wang, J. Yao et al., Effects of Electromagnetic Compound Field on the Escape Behavior of Pores in Molten Pool During Laser Cladding, Surf. Coat. Technol., 2020, 383, 125198.

    Article  CAS  Google Scholar 

  35. S. Hu, A.S. Haselhuhn, Y. Ma et al., Effect of External Magnetic Field on Resistance Spot Welding of Aluminium to Steel, Sci. Technol. Weld. Joining, 2022, 27(2), p 84–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Shandong Provincial Natural Science Foundation, China (ZR2023QE084), and the doctoral fund of Shandong Jianzhu University, Shandong province, China.

Author information

Authors and Affiliations

Authors

Contributions

Kang Qi involved in conceptualization, investigation, methodology, writing original draft, measurements; Long Jiang took part in experimental analysis, validating the results, review and editing.

Corresponding author

Correspondence to Kang Qi.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interests that represent a conflict of interest in connection with the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, K., Jiang, L. Microstructure and Wear Resistance of FeCoNiCr0.2B0.2 Alloy Prepared by Magnetic Field-Assisted Laser Cladding on Ti-6Al-4V Alloy. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09174-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09174-3

Keywords

Navigation