Skip to main content
Log in

Effect of Die Deflection during Au Wire Bonding Process on Bonding Quality in Overhang Semiconductor Package

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Wire bonding is an interconnection technique widely used in semiconductor packaging. Certain packages employ a stacked die configuration for miniaturization. Thus, the advancement of stacking dies leads to the overhanging structure of the staked dies. The complexity of an overhang generates challenges in the wire bonding process, whereby the bonding location has no supporting structure, leading to poor bondability due to die deflection. Thus, this paper studies the wire bonding quality on overhang stacked die structures. The experimental work focuses on the wire bonding process of more than 50 Au (gold) wires on more than 50 Al (aluminum) bonding sites with a variation of overhang distance, \(t\) ranged from 5 to 11.7 and wire bonding force, \(x\) ranged from 3 to 13. Analysis of the wire bonding quality is focused on die deflection during the wire bonding process. After the wire bonding process, intermetallic compound (IMC) formation was determined between the Au wire and Al bond pad using an optical microscope. The IMC was analyzed to determine the IMC coverage. The findings show that higher overhang distance and bonding force contribute to higher die deflection values during the wire bonding process. The die deflection is higher at the corner region of bonding points compared to the middle region bonding sites. Thus, this work suggests the refined average values to represent the true die deflection values by ignoring the “corner” region values. IMC coverage results show less coverage as the overhang distance and bonding force are increased. This work shows good wire bonding quality can be obtained by using a lower bonding force of 13 \(x\), and lower overhang distance of 11.7 \(t\). This could prevent the non-established wire bonding for overhang structure, at least for a die thickness of 31 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Zhang, S. Xue, and J. Wang, New Challenges of Miniaturization of Electronic Devices: Electromigration and Thermomigration in Lead-Free Solder Joints, Mater. Des., 2020, 192, 108726.

    Article  CAS  Google Scholar 

  2. H. Song et al., Highly-Integrated, Miniaturized, Stretchable Electronic Systems Based on Stacked Multilayer Network Materials, Sci. Adv., 2022, 8, p 3785. https://doi.org/10.1126/sciadv.abm3785

    Article  CAS  Google Scholar 

  3. C.-Y. You, Hu. Bo-Fan, Xu. Bo-Rui, Z.-Y. Zhang, Wu. Bin-Min, G.-S. Huang, E.-M. Song, and Y.-F. Mei, Foldable-Circuit-Enabled Miniaturized Multifunctional Sensor for Smart Digital Dust, Chip, 2022, 1(4), 100034.

    Article  Google Scholar 

  4. Z. Mo, F. Wang, J. Li, Q. Liu, G. Zhang, W. Li, C. Yang, and R. Sun, Temporary Bonding and Debonding in Advanced Packaging: Recent Progress and Applications, Electronics, 2023, 12, p 1666.

    Article  Google Scholar 

  5. J.H. Lau, System-in-Package (SiP), Semiconductor Advanced Packaging, 1st ed. Springer, Singapore, 2021, p 27–74

    Book  Google Scholar 

  6. W. Tian, C. Wang, Z. Zhao, and H. Cui, Structures and Materials of System-in-Package: A Review, Recent Pat. Mech. Eng., 2021, 14(1), p 28–41.

    Article  CAS  Google Scholar 

  7. C. L. Gan and C. Y. Huang, Advanced Memory and Device Packaging. In: Interconnect Reliability in Advanced Memory Device Packaging. Springer Series in Reliability Engineering. Springer, Cham. 2023, https://doi.org/10.1007/978-3-031-26708-6_1.

  8. S.S. Kim, S.K. Yong, W. Kim, S. Kang, H.W. Park, K.J. Yoon, D.S. Sheen, S. Lee, and C.S. Hwang, Review of Semiconductor Flash Memory Devices for Material and Process Issues, Adv. Mater., 2022, 35, p 2200659.

    Article  Google Scholar 

  9. M.A. Bakar, A. Atiqah, and A. Jalar, Review on Corrosion in Electronic Packaging Trends of Collaborative between Academia-Industry, Sustainability, 2022, 14(23), p 15730.

    Article  CAS  Google Scholar 

  10. S. Supramaniam, M.A. Bakar, and A. Jalar, Early Corrosion Detection of Cu-Ag Wedge bonding in Semiconductor Package, J. Fail. Anal. Prev., 2022, 22(6), p 2317–2325.

    Article  Google Scholar 

  11. A.A. Omar, A. Jalar, and K.A. Hamid, Evolution of Discrete Semiconductor Copper Wedge Bond in Biased Temperature Humidity Chamber, J. Teknol., 2022, 84(6–2), p 129–135.

    Google Scholar 

  12. K.A. Hamid, A.H. Badarisman, A. Jalar, and M.A. Bakar, Investigation of Integrated Factors in the Occurrence of Copper Wire Bonding Corrosion of Semiconductor Packages, J. Phys. Conf. Ser., 2022, 2169, p 012016.

    Article  Google Scholar 

  13. M.N. Zulkifli, F. Harun, and A. Jalar, Effect of Surface Roughness and Hardness of Leadframe on the Bondability of Gold Wedge Bonds, Microelectron. Int., 2019, 36(2), p 62–67.

    Article  Google Scholar 

  14. Y. Long, B. He, W. Cui, Y. Ji, X. Zhuang, and J. Twiefel, Investigations on the Mechanism of Microweld Changes during Ultrasonic Wire Bonding by Molecular Dynamics Simulation, Mater. Des., 2020, 192, 108718.

    Article  Google Scholar 

  15. W. Feng, X. Chen, C. Wang, and Y. Shi, Application Research on the Time–Frequency Analysis Method in the Quality Detection of Ultrasonic Wire Bonding, Int. J. Distrib. Sens. Netw., 2021, 17(5), p 1–11.

    Article  Google Scholar 

  16. T.H. Chuang, S.W. Hsu, and C.H. Chen, Intermetallic Compounds at the Interfaces of Ag–Pd Alloy Stud Bumps With Al Pads, IEEE Trans. Compon. Packag. Manuf. Technol., 2020, 10(10), p 1657–1665.

    Article  CAS  Google Scholar 

  17. C.K. Yau, T.J.S. Anand, S. Shariza, Y.F. Khong, L.C. Chia, L.B. Huat, R. Singh, and R.T.R. Kumar, Statistical Analysis on the Mechanical and Micro-Structural Characteristics of Thermosonic Cusingle Bond Al Interconnection, Microelectron. Reliab., 2020, 109, 113664.

    Article  CAS  Google Scholar 

  18. C.C. Yang, Y.F. Su, S.Y. Liang, and K.N. Chiang, Simulation of Wire Bonding Process Using Explicit Fem with Ale Remeshing Technology, J. Mech., 2020, 36(1), p 47–54.

    Article  CAS  Google Scholar 

  19. M.H. Malik, A. Tsiamis, H. Zang, A. Binder, S. Mitra, and A. Roshanghias, Die-Level Thinning for Flip-Chip Integration on Flexible Substrates, Electron, 2022, 11(6), p 849.

    Article  CAS  Google Scholar 

  20. . Milton, A. Shah, H. Xu, O. Kwon, G. Schulze, I. Qin, and N. Wong, Smart Wire Bond Solutions for SiP and Memory Packages. In 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2019, p 55-62.

  21. Y. Chen, S. Ding, J. Long, M. Hou, X. Chen, J. Gao, Y. He, and C.P. Wong, Rationally Designing the Trace of Wire Bonder Head for Large-Span-Ratio Wire Bonding in 3D Stacked Packaging, IEEE Access, 2020, 8, p 206571–206580.

    Article  Google Scholar 

  22. Y.S. Zou, C.L. Gan, M.H. Chung, and H. Takiar, A Review of Interconnect Materials used in Emerging Memory Device Packaging: First- and Second-Level Interconnect Materials, J. Mater. Sci. Mater. Electron., 2021, 32, p 27133–27147.

    Article  CAS  Google Scholar 

  23. F. Li, 3-D Stacking of SiC Integrated Circuit Chips with Gold Wire Bonded Interconnects for Long-Duration High-Temperature Applications, IEEE Trans. Compon. Packag. Manuf. Technol., 2022, 12(10), p 1601–1608.

    Article  Google Scholar 

  24. F. Wang, Q. Qing, and W. Tang, Study of Complex Looping With Five Kinks in Thermosonic Wire Bonding by Using Variable-Length Link-Spring Model, IEEE Trans. Compon. Packag. Manuf. Technol., 2018, 9(2), p 375–379.

    Article  Google Scholar 

  25. Y.F. Yao, T.Y. Lin, and K.H. Chua, Improving the Deflection of Wire Bonds in Stacked Chipscale Package (CSP), Microelectron. Reliab., 2003, 43(12), p 2039–45.

    Article  Google Scholar 

  26. B.S. Kumar, M.S.R. Malliah, L. Ming, S.K. Yew, and James, Process characterization of Cu & Pd coated Cu wire bonding on overhang die: Challenges and solution, 2010 12th Electronics Packaging Technology Conference, 2010, 859-867.

  27. D. Shin, D. Kwak, Y. Song, M. Chung, E. Ahn, and K. Cho, Characterization of Wire Bondability on Overhang Structured Chip in Multi Chip Package, 2006 International Conference on Electronic Materials and Packaging, Hong Kong, China, 2006, p 1-6.

  28. H.S. Kim and H.G. Song, Investigation of Moisture-Induced Failures of Stacked-Die Package, Microelectron. Reliab., 2007, 47, p 1673–1679.

    Article  CAS  Google Scholar 

  29. B. Karunamurthy, T. Ostermann, M. Bhattachary, and S. Maity, A Novel Simulation Methodology for Full Chip-Package Thermo-Mechanical Reliability Investigations, Microelectron. J., 2014, 45, p 966–971.

    Article  CAS  Google Scholar 

  30. M. Huang, Z. Suo, and Q. Ma, Plastic Ratcheting Induced Cracks in Thin Film Structures, J. Mech. Phys. Solids, 2002, 50, p 1079–1098.

    Article  Google Scholar 

  31. W.H. Lu, J.H. Lin, and C.S. Chou, Influence of Die-Shift-Distance of Overhang Dies on Residual Thermal Shear Stress in 5-Chip SiP After EMC Curing, Mater. Des., 2016, 92, p 512–521.

    Article  CAS  Google Scholar 

  32. L. Yang and Z. Ji, "High modulus DAF Introduction to decrease thin die WB crack issue," 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC), Singapore, 2018, pp. 713-716, doi: https://doi.org/10.1109/EPTC.2018.8654364

  33. O. Yauw, J. Wu, A. Tan, I. Qin, J. Wu, J. H. Yang. "Leading edge die stacking and wire bonding technologies for advanced 3D memory packages," In 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC), Singapore, 2017, pp. 1-7, doi: https://doi.org/10.1109/EPTC.2017.8277544

  34. Y. Liu, Bo. Yang, Xu. Shenghua Huang, and N.Y. Wang, Thermo-mechanical Modeling of Stacked die Flash Memory Package EMI Shielding Layer Crack under Thermal Cycling Test. Thermo-Mechanical Modeling of Stacked Die Flash Memory Package EMI Shielding Layer Crack under Thermal Cycling Test, Microelectron. Reliabil., 2021, 127, 114410.

    Article  CAS  Google Scholar 

  35. H. Zhou, Y. Zhang, J. Cao, C. Su, C. Li, and A. Chang, An Research Progress on Bonding Wire for Microelectronic Packaging, Micromachines, 2023, 14, p 432.

    Article  Google Scholar 

  36. Y.S. Chen, M.T. Lee, N. Liu, and K. Liu, A Study for the Effectiveness of Wire Bond Process Parameters on AI-Cu Intermetallic Compound Distributions and the Correlation between Bonded Ball Adhesions and IMC Coverage, IEEE Int. Symp. Phys. Fail. Anal. Integrated Circ., 2018, 2018, p 1–5.

    Google Scholar 

  37. T. J. Yap, Y. K. Lin, Au,, and P. L. Eu, Importance of Cu/Al intermetallic coverage in copper wire bonding with sensitive pad structure, In 2012 14th International Conference on Electronic Materials and Packaging (EMAP), 2012, p 1-5.

  38. J. Xi, N. Mendoza, K. Chen, T. Yang, E. Reyes, S. Bezuk, J. Lin, S. Ke,, and E. Chen, Evaluation of Ag wire reliability on fine pitch wire bonding, In 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), 2015, p 1392-1395.

  39. G.R. Kim, S.S. Ha, C.H. Park, S. Pae, and B. Choi, The Bondability and Reliability of a Ternary Ag Alloy Wire on an Al Bonding Pad under N2-Free Conditions, Mater. Trans., 2018, 59(9), p 1487–1492.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support and research facilities provided by Western Digital via SanDisk Storage Malaysia Sdn. Bhd (research grant: RR-2020-004) through collaboration activities with Universiti Kebangsaan Malaysia (research grant: TAP K022551).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Abu Bakar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azahar, A.Z., Bakar, M.A., Jalar, A. et al. Effect of Die Deflection during Au Wire Bonding Process on Bonding Quality in Overhang Semiconductor Package. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-09028-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-09028-4

Keywords

Navigation