Skip to main content
Log in

Constitutive Relationship Study of Laves Phase NbCr2/Nb Two-Phase Alloy Using Modified J-C Model and Back Propagation Neural Network Model

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The Laves phase NbCr2/Nb two-phase alloy has received significant research interest as a potential high-temperature structural material. Based on isothermal and constant strain rate compression experiments conducted on the alloy within a temperature range of 1000 -1200 °C and strain rate range of 0.001-0.1 s−1, the flow stress constitutive relationship of the alloy was established using the J-C model and BP artificial neural network model, respectively. It was found that the conventional J-C model fails to describe the flow stress softening behavior of the alloy. In contrast, the modified J-C model provides a better prediction of the flow stress softening phenomenon and accurately characterizes the flow stress behavior of the alloy, it exhibits high prediction accuracy as indicated by the correlation coefficient (R) of 0.9902, average absolute relative error (AARE) of 8.773% and mean relative error (MRE) of 7.389%. The flow stress behavior of the alloy can be more accurately characterized using the constitutive relationship built by the BP neural network model. The model exhibits higher prediction accuracy with R of 0.9998, AARE of 2.232% and MRE of 0.870%. The results demonstrate that the BP neural network model has superior capability in predicting the flow stress behavior of the alloy. The established flow stress constitutive relationship can provide more accurate and reliable fundamental data with respect to flow stress for finite element simulations of forging deformation process of the Laves phase NbCr2/Nb two-phase alloy. In addition, it serves as theoretical basis for rational design of forging process and accurate calculation of the deformation force of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. X.S. Zhang, Y.J. Chen, and J.L. Hu, Recent Advances in the Development of Aerospace Materials, Prog. Aerosp. Sci., 2018, 97, p 22–34.

    Article  Google Scholar 

  2. M. Takeyama and C.T. Liu, Microstructure and Mechanical Properties of Laves-Phase Alloys Based on Cr2Nb, Mater. Sci. Eng. A, 1991, 132, p 61–66.

    Article  Google Scholar 

  3. T. Takasugi, M. Yoshida, and S. Hanada, Deformability Improvement in C15 NbCr2 Intermetallics by Addition of Ternary Elements, Acta Mater., 1996, 44, p 669–674.

    Article  CAS  Google Scholar 

  4. T. Takasugi, M. Yoshida, and S. Hanada, Microstructure and High-Temperature Deformation of the C15 NbCr2-Based Laves Intermetallics in Nb-Cr-V Alloy System, J. Mater. Res., 1995, 10, p 2463–2470.

    Article  CAS  Google Scholar 

  5. F. Gao, S.M. Li, and K.W. Li, Formation of Non-Equilibrium Ductile Solid Solutions and Textures in NbCr2 Bulks Produced by Mechanical Milling and Spark Plasma Sintering, J. Alloys Compd., 2020, 826, p 154130.

    Article  CAS  Google Scholar 

  6. X. Xiao, S.Q. Lu, P. Hu, M.G. Huang, and M.W. Fu, Effect of Ball Milling Time on Microstructure and Properties of Laves Phase NbCr2 Alloys Synthesized by Hot Pressing, Trans. Nonferr. Metals Soc. China, 2009, 19, p 545–551.

    Article  CAS  Google Scholar 

  7. X. Xiao, S.Q. Lu, P. Hu, M.G. Huang, X.W. Nie, and M.W. Fu, The Effect of Hot Pressing Time on the Microstructure and Properties of Laves Phase NbCr2 Alloys, Mater. Sci. Eng. A, 2008, 485, p 80–85.

    Article  Google Scholar 

  8. P. Li, T. Satoshi, I. Ken-ichi, H. Toshiaki, and M. Seiji, Effect of Si on the Stability of NbCr2 Laves Phase in Cr-Mo-Nb System, Intermetallics, 2019, 110, p 106457.

    Article  Google Scholar 

  9. H.T. Huang, G.F. Li, X. Xiao, S.Q. Lu, and P. Peng, First-Principles Investigations of the Fracture Toughness of NbCr2 Alloyed by X (V, Mo, Ti, Fe), Solid State Commun., 2022, 344, p 114664.

    Article  CAS  Google Scholar 

  10. H.Z. Zheng, S.Q. Lu, J.Y. Zhu, and G.M. Liu, Effect of Al Additions on the Oxidation Behavior of Laves Phase NbCr2 Alloys at 1373 K and 1473 K, Int. J. Refract Metal Hard Mater., 2009, 27, p 659–663.

    Article  CAS  Google Scholar 

  11. C.T. Liu, J.H. Zhu, M.P. Brady, C.G. McKamey, and L.M. Pike, Physical Metallurgy and Mechanical Properties of Transition-Metal Laves Phase Alloys, Intermetallics, 2000, 8, p 1119–1129.

    Article  CAS  Google Scholar 

  12. P. Berthod and M. Ritouet-Léglise, Microstructures and Hardness of Model Niobium-Based Chromium-Rich Cast Alloys, Adv. Mater. Res., 2018, 7, p 17–28.

    Google Scholar 

  13. L.P. Deng, S.Q. Lu, B.B. Tang, and W. Yu, Thermal Stability of Nb-Cr-Mo, Int. J. Mater. Res., 2018, 109(4), p 301–307.

    Article  CAS  Google Scholar 

  14. L.P. Deng, S.Q. Lu, B.B. Tang, and Y. Lin, Effect of Si on Thermal Stability of Nb-22.5 Cr Alloy, Vacuum, 2018, 152, p 312–318.

    Article  CAS  Google Scholar 

  15. Y.Q. Qiao, M.Y. Li, and X.P. Guo, Development of Silicide Coatings Over Nb-NbCr2 Alloy and their Oxidation Behavior at 1250° C, Surf. Coat. Technol., 2014, 258, p 921–930.

    Article  CAS  Google Scholar 

  16. X. Xiao, S.Q. Lu, Y.Q. Ma, P. Hu, and X.W. Nie, Microstructure and Properties of Nb/NbCr2 Composites Prepared by Mechanical Alloying Followed by Hot Pressing, Chin. J. Nonferr. Metals, 2007, 17, p 1761–1766. (in Chinese)

    CAS  Google Scholar 

  17. Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759.

    Article  CAS  Google Scholar 

  18. Y.C. Lin, L.T. Li, Y.X. Fu, and Y.Q. Jiang, Hot Compressive Deformation Behavior of 7075 Al Alloy Under Elevated Temperature, J. Mater. Sci., 2012, 47, p 1306–1318.

    Article  CAS  Google Scholar 

  19. Y.C. Lin, L.T. Li, and Y.Q. Jiang, A Phenomenological Constitutive Model for Describing Thermo-Viscoplastic Behavior of Al-Zn-Mg-Cu Alloy Under Hot Working Condition, Exp. Mech., 2012, 52, p 993–1002.

    Article  CAS  Google Scholar 

  20. J.K. Wu, S.Q. Lu, L.P. Deng, T.X. Wang, and K.L. Wang, Thermal Deformation Behavior and Constitutive Relationship of Laves Phase NbCr2/Nb Dual-phase Alloy, Rare Metal Mater. Eng., 2021, 50, p 2541–2551. (in Chinese)

    CAS  Google Scholar 

  21. A. Saxena, A. Kumaraswamy, N. Kotkunde, and S. Kurra, Constitutive Modeling of High-Temperature Flow Stress of Armor Steel in Ballistic Applications a Comparative Study, J. Mater. Eng. Perform., 2019, 28, p 6505–6513.

    Article  CAS  Google Scholar 

  22. Y.C. Lin, X.M. Chen, and G. Liu, A Modified Johnson-Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel, Mater. Sci. Eng. A, 2010, 527, p 6980–6986.

    Article  Google Scholar 

  23. Q.Y. Hou and J.T. Wang, A Modified Johnson-Cook Constitutive Model for Mg-Gd-Y Alloy Extended to a Wide Range of Temperatures, Comput. Mater. Sci., 2010, 50, p 147–152.

    Article  CAS  Google Scholar 

  24. A. Iturbe, E. Giraud, E. Hormaetxe, A. Garay, G. Germain, K. Ostolaza, and P.J. Arrazola, Mechanical Characterization and Modelling of Inconel 718 Material Behavior for Machining Process Assessment, Mater. Sci. Eng. A, 2017, 682, p 441–453.

    Article  CAS  Google Scholar 

  25. X.R. Chen, Q.Y. Liao, Y.X. Niu, W.T. Jia, Q.C. Le, C.L. Cheng, F.X. Yu, and J.Z. Cui, A Constitutive Relation of AZ80 Magnesium Alloy During Hot Deformation Based on Arrhenius and Johnson-Cook Model, J. Market. Res., 2019, 8, p 1859–1869.

    CAS  Google Scholar 

  26. S. Deb, A. Muraleedharan, R.J. Immanuel, S.K. Panigrahi, G. Racineux, and S. Marya, Establishing Flow Stress Behavior of Ti-6Al-4V Alloy and Development of Constitutive Models Using Johnson-Cook Method and Artificial Neural Network for Quasi-Static and Dynamic Loading, Theoret. Appl. Fract. Mech., 2022, 119, p 103338.

    Article  CAS  Google Scholar 

  27. Y. Han, G.J. Qiao, J.P. Sun, and D.N. Zou, A Comparative Study on Constitutive Relationship of As-Cast 904L Austenitic Stainless Steel During Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models, Comput. Mater. Sci., 2013, 67, p 93–103.

    Article  CAS  Google Scholar 

  28. L.P. Deng, Study on thermal stability and high temperature mechanical properties of two-phase NbCr2/Nb and NbCr2/Cr alloy. Nanjing Univ. Aeronau. Astronaut. 2018 (in Chinese)

  29. L.P. Deng, S.Q. Lu, B.B. Tang, and Z.L. Lei, High Temperature Creep Behavior of NbCr2/Nb Alloy, J. Plast. Eng., 2019, 26(2), p 194–198. (in Chinese)

    Google Scholar 

  30. Y.W. Xiao, Y.C. Lin, Y.Q. Jiang, X.Y. Zhang, G.D. Pang, D. Wang, and K.C. Zhou, A Dislocation Density-Based Model and Processing Maps of Ti-55511 Alloy with Bimodal Microstructures During Hot Compression in α+ β Region, Mater. Sci. Eng. A, 2020, 790, p 139692.

    Article  CAS  Google Scholar 

  31. R. Amitava, A. Mohammad, K.T. Jitendar, D. Satyabrata, and D. Rupa, Study of Processing Map and Effect of Hot Rolling on Mechanical Properties of Aluminum 5083 Alloy, Trans. Indian Inst. Met., 2020, 73(7), p 1809–1826.

    Article  Google Scholar 

  32. R. Amitava, A. Mohammad, D. Satyabrata, and D. Rupa, Constitutive Modeling for Predicting High-Temperature Flow Behavior in Aluminum 5083+10wt Pct SiCp Composite, Metall. Mater. Trans. B, 2019, 50, p 1061–1076.

    Google Scholar 

  33. Y.C. Lin, Y.W. Xiao, Y.Q. Jiang, G.D. Pang, H.B. Li, X.Y. Zhang, and K.C. Zhou, Spheroidization and Dynamic Recrystallization Mechanisms of Ti-55511 Alloy with Bimodal Microstructures During Hot Compression in α+ β Region, Mater. Sci. Eng. A, 2020, 782, p 139282.

    Article  CAS  Google Scholar 

  34. T. Takasugi, S. Hanada, and M. Yoshida, High Temperature Mechanical Properties of C15 Laves Phase Cr2Nb Intermetallics, Mater. Sci. Eng. A, 1995, 192, p 805–881.

    Article  Google Scholar 

  35. C.Y. Lu, J. Wang, and P.Z. Zhang, Flow Behavior Analysis and Flow Stress Modeling of Ti17 Alloy in β Forging Process, J. Mater. Eng. Perform., 2021, 30(10), p 7668–7681.

    Article  CAS  Google Scholar 

  36. A.V. Kazantzis, M. Aindow, I.P. Jones, G.K. Triantafyllidis, and JTh.M. De Hosson, The mechanical properties and the deformation microstructures of the C15 Laves phase Cr2Nb at high temperatures, Acta Mater., 2007, 55, p 1873–1884.

    Article  CAS  Google Scholar 

  37. A.N. Behera, A. Chaudhuri, R. Kapoor, J.K. Chakravartty, and S. Suwas, High Temperature Deformation Behavior of Nb-1 wt.% Zr alloy, Mater. Design, 2016, 92, p 750–759.

    Article  CAS  Google Scholar 

  38. M. Yoshida and T. Takasugi, TEM Observation for Deformation Microstructure of Laves Phase NbCr2 Containing V, Mater. Sci. Eng. A, 2003, 345, p 350–356.

    Article  Google Scholar 

  39. D.P. Pope and F. Chu, Grain Boundary Faceting and Twinning in Complex Intermetallic Compounds, Philos. Mag. A, 1994, 69(3), p 409–420.

    Article  CAS  Google Scholar 

  40. D.V. Luzzi, Analysis of Stacking Faults in the Hf-V-Nb Cubic Laves Phase, Scripta Mater., 1997, 37(6), p 713–720.

    Article  CAS  Google Scholar 

  41. K.S. Kumar and P.M. Hazzledine, Polytypic Transformations in Laves phases, Intermetallics, 2004, 12(7–9), p 763–770.

    Article  CAS  Google Scholar 

  42. G.R. Johnson, A Constitutive Model and Data for Materials Subjected to Large Strains, High Strain Rates, and High Temperatures, Proc 7th Inf. Symp. Ballist., 1983, 19, p 541–547.

    Google Scholar 

  43. A. Abbasi-Bani, A. Zarei-Hanzaki, M.H. Pishbin, and N. Haghdadi, A Comparative Study on the Capability of Johnson-Cook and Arrhenius-Type Constitutive Equations to Describe the Flow Behavior of Mg-6Al-1Zn Alloy, Mech. Mater., 2014, 71, p 52–61.

    Article  Google Scholar 

  44. L.Q. Niu, M. Cao, Z.L. Liang, B. Han, and Q. Zhang, A Modified Johnson-Cook Model Considering Strain Softening of A356 Alloy, Mater. Sci. Eng. A, 2020, 789, p 139612.

    Article  CAS  Google Scholar 

  45. C.Y. Lu, J. Shi and J. Wang, Physically Based Constitutive Modeling for Ti17 Alloy with Original Basketweave Microstructure in β Forging A Comparison of Three Approaches, Mater Charact, 2021, 181, p 111455.

    Article  CAS  Google Scholar 

  46. N. Fiorentini, D. Pellegrini, and M. Losa, Overfitting Prevention in Accident Prediction Models: Bayesian Regularization of Artificial Neural Networks, Transport. Res. Record: J. Transport. Res. Board, 2023, 2677(2), p 1455–1470.

    Article  Google Scholar 

  47. D.Q. Yan, Q. Zhou, J.Z. Wang, and N. Zhang, Bayesian Regularization Neural Network Based on Artificial Intelligence Optimization, Int. J. Prod. Res., 2017, 55(8), p 2266–2287.

    Article  Google Scholar 

  48. C.Y. Lu, J. Shi, and V. Maitra, Modelling and Process Optimization for Relative Density of Ti6Al4V Produced by Selective Laser Melting A Data-driven Study, Int. J. Adv. Manuf. Technol., 2022, 121, p 1973–1988.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51964034, 52161021) and the fund of the National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology (EG202201333).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiqiang Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

JiangFeng, J., Lu, S., Xiao, X. et al. Constitutive Relationship Study of Laves Phase NbCr2/Nb Two-Phase Alloy Using Modified J-C Model and Back Propagation Neural Network Model. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08941-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08941-y

Keywords

Navigation