Skip to main content
Log in

Synthesis and Electrochemical Properties of Molybdenum-Doped LiMn0.6Fe0.4PO4 Cathode Materials

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, molybdenum-doped LiMn0.6Fe0.4PO4 cathode materials were prepared by spray drying combined with carbon thermal reduction. XRD and SEM test results showed that the doping of molybdenum was successful, and the appropriate doping amount could effectively adjust the crystal structure of the material, refine the particle size, and thus improve the diffusion rate of ions. The synthesized Mo-doped LiMn0.6Fe0.4PO4 exhibited good electrochemical properties, where the best Mo doping amount x = 0.15, reached a first discharge-specific capacity of 153.2 mAh g−1 at 0.2 C and a discharge-specific capacity of 94.2 mAh g−1 even at 10 C current density. The cycling performance of the material was also improved to a great extent, with a capacity retention of 91.4% after 100 cycles at 1 C. The EIS results showed that the electrochemical impedance of the material decreased significantly with the appropriate amount of Mo doping, which proved that Mo doping helped to improve the Li+ diffusion rate of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Winter, B. Barnett, and K. Xu, Before Li-Ion Batteries, Chem. Rev., 2018, 118(23), p 11433–11456.

    Article  CAS  Google Scholar 

  2. W. Zhang, X. Zhang, F. Cheng et al., Enabling Stable 4.6 V LiCoO2 Cathode through Oxygen Charge Regulation Strategy, J. Energy Chem., 2023, 76, p 557–565.

    Article  CAS  Google Scholar 

  3. F. Jiang, S. Yang, X. Cheng et al., Thermal Safety of Dendritic Lithium Against Non-aqueous Electrolyte in Pouch-Type Lithium Metal Batteries, J. Energy Chem., 2022, 72, p 158–165.

    Article  CAS  Google Scholar 

  4. A.K. Padhi, K.S. Nanjundaswamy, and J.B. Goodenough, Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc., 1997, 144(4), p 1188–1194.

    Article  CAS  Google Scholar 

  5. P.P. Prosini, M. Lisi, D. Zane et al., Determination of the Chemical Diffusion Coefficient of Lithium in LiFePO4, Solid State Ion., 2002, 148(1–2), p 45–51.

    Article  CAS  Google Scholar 

  6. K. Zhang, J. Cao, S. Tian et al., The Prepared and Electrochemical Property of Mg-Doped LiMn0.6Fe0.4PO4/C as Cathode Materials for Lithium-Ion Batteries, Ionics, 2021, 27(11), p 4629–4637.

    Article  CAS  Google Scholar 

  7. S. Tian, K. Zhang, J. Cao et al., Spherical Ni-Doped LiMn0.6Fe0.4PO4/C Composites with High-Rate Performance, Ionics, 2021, 27(7), p 2877–2887.

    Article  CAS  Google Scholar 

  8. S. Roy and S. Nag, La-Doped LiMnPO4/C Cathode Material for Lithium-Ion Battery, Chem. Eng. Sci., 2023, 272(15), p 118600.

    Google Scholar 

  9. T. Yi, P. Peng, Z. Fang et al., Carbon-Coated LiMn1-xFexPO4 (0≤x≤0.5) Nanocomposites as High-Performance Cathode Materials for Li-Ion Battery, Compos. Part B Eng., 2019, 175, p 107067.

    Article  CAS  Google Scholar 

  10. M.F. Sgroi, R. Lazzaroni, D. Beljonne et al., Doping LiMnPO4 with Cobalt and Nickel: A First Principle Study, Batteries, 2017, 3(2), p 11.

    Article  Google Scholar 

  11. L. Chang, X. Bi, S. Luo et al., Investigation on Structural and Electrochemical Properties of Olivine-Structured LiMn1−xFexPO4/C Cathode Materials Based on First-Principles Calculation, J. Electrochem. Soc., 2022, 169(1), p 010508.

    Article  CAS  Google Scholar 

  12. J. Yao, S. Bewlay, K. Konstantionv et al., Characterisation of Olivine-Type LiMnxFe1−xPO4 Cathode Materials, J. Alloy. Compd., 2006, 425(1–2), p 362–366.

    Article  CAS  Google Scholar 

  13. K. Kagesawa, E. Hosono, M. Okubo et al., Electrochemical Properties of LiMnxFe1−xPO4 (x=0, 0.2, 0.4, 0.6, 0.8 and 1.0) Vapor Grown Carbon Fiber Core–Sheath Composite Nanowire Synthesized by Electrospinning Method, J. Power Sources, 2014, 248, p 615–620.

    Article  CAS  Google Scholar 

  14. T. Honma, K. Nagamine, and T. Komatsu, Fabrication of Olivine-Type LiMnxFe1−xPO4 Crystals via the Glass-Ceramic Route and their Lithium-Ion Battery Performance, Ceram. Int., 2010, 36(3), p 1137–1141.

    Article  CAS  Google Scholar 

  15. Y. Li, W. Jiang, G. Ding et al., Hierarchically Porous LiMn0.1Fe0.9PO4/C Microspherical Cathode Materials Prepared by a Facile Template-Free Hydrothermal Method for High-Performance Lithium-Ion Batteries, J. Alloy. Compd., 2021, 859, p 157825.

    Article  CAS  Google Scholar 

  16. D.V. Trinh, M.T.T. Nguyen, H.T.M. Dang et al., Hydrothermally Synthesized Nanostructured LiMnxFe1−xPO4 (x = 0–0.3) Cathode Materials with Enhanced Properties for Lithium-Ion Batteries, Sci. Rep., 2021, 11(1), p 12280.

    Article  CAS  Google Scholar 

  17. F. Jiang, K. Qu, M. Wang et al., Atomic Scale Insight into the Fundamental Mechanism of Mn Doped LiFePO4, Sustain. Energy Fuels, 2020, 4(6), p 2741–2751.

    Article  CAS  Google Scholar 

  18. R. Fan, C. Fan, Z. Hu et al., Construction of High Performance N-Doped Carbon Coated LiMn0.8Fe0.2PO4 Nanocrystal Cathode for Lithium-Ion Batteries, J. Alloy. Compd., 2021, 876, p 160090.

    Article  CAS  Google Scholar 

  19. L. Zhang, X. Zhang, L. Wang et al., Impedance Studies of LiMn0.8Fe0.2PO4/C Cathodes for Lithium-Ion Batteries, Ionics, 2021, 27(11), p 4673–4686.

    Article  CAS  Google Scholar 

  20. G. Hu, Y. Wang, K. Du et al., Synthesis and Characterization of LiMn0.8Fe0.2PO4/rGO/C for Lithium-Ion Batteries via in-situ Coating of Mn0.8Fe0.2C2O4·2H2O Precursor with Graphene Oxide, J. Solid State Electrochem., 2020, 24(10), p 2441–2450.

    Article  CAS  Google Scholar 

  21. Z. Li, X. Ren, W.C. Tian et al., LiMn0.6Fe0.4PO4/CA Cathode Materials with Carbon Aerogel as Additive Synthesized by Wet Ball-Milling Combined with Spray Drying, J. Electrochem. Soc., 2020, 167(9), p 090516.

    Article  CAS  Google Scholar 

  22. C. Su, C. Wu, S. Hsu et al., Improving the Electrochemical Performance of LiMn0.8Fe0.2PO4 Cathode with Nitrogen-Doped Carbon via Dielectric Barrier Discharge Plasma, Mater. Lett., 2020, 272, p 127880.

    Article  CAS  Google Scholar 

  23. Y. Liu, W.C. Qin, D.K. Zhang et al., Effect of Na+ in situ Doping on LiFePO4/C Cathode Material for Lithium-Ion Batteries, Prog. Nat. Sci. Mater. Int., 2021, 31(1), p 14–18.

    Article  CAS  Google Scholar 

  24. Y.X. Wen, M.P. Zheng, Z.F. Tong et al., Effect of Ti4+ Ion Doping on the Performance and Structure of Lithium Iron Phosphate, J. Inorg. Mater., 2006, 21(1), p 115–120.

    CAS  Google Scholar 

  25. Y. Wang, H. Yang, C.Y. Wu et al., Facile and Controllable One-Pot Synthesis of Nickel-Doped LiMn0.8Fe0.2PO4 Nanosheets as High Performance Cathode Materials for Lithium-Ion Batteries, J. Mater. Chem. A, 2017, 5(35), p 18674–18683.

    Article  CAS  Google Scholar 

  26. M. Zhang, L.F. Jiao, H.T. Yuan et al., The Preparation and Characterization of Olivine LiFePO4/C Doped with MoO3 by a Solution Method, Solid State Ion., 2006, 177, p 3309–3314.

    Article  CAS  Google Scholar 

  27. Y. Chen, Z.L. Wang, C.Y. Yu et al., Electrochemical Properties of Mo-Doped LiFePO4 Cathode Material, Acta Phys. Chim. Sin., 2008, 24(8), p 1498–1502.

    Article  CAS  Google Scholar 

  28. D.X. Zhang, J. Wang, K.Z. Dong et al., First Principles Investigation on the Elastic and Electronic Properties of Mn Co, Nb, Mo Doped LiFePO4, Comput. Mater. Sci., 2018, 155, p 410–415.

    Article  CAS  Google Scholar 

  29. Z.P. Ma, G.J. Shao, G.L. Wang et al., Electrochemical Performance of Mo-Doped LiFePO4/C Composites Prepared by Two-Step Solid-State Reaction, Ionics, 2013, 19, p 437–443.

    Article  CAS  Google Scholar 

  30. R. Marom, F.S. Amalraj, N. Leifer et al., A Review of Advanced and Practical Lithium Battery Materials, J. Mater. Chem., 2011, 21, p 9938–9954.

    Article  CAS  Google Scholar 

  31. Z.L. Wang, S.R. Sun, D.G. Xia et al., Investigation of Electronic Conductivity and Occupancy Sites of Mo Doped into LiFePO4 by ab Initio Calculation and X-Ray Absorption Spectroscopy, J. Phys. Chem. C, 2008, 112(44), p 17450–17455.

    Article  CAS  Google Scholar 

  32. Y. Zhang and Z.C. Shao, Preparation of Mo-Doping LiFePO4/C by Carbon Reduction Method, Mater. Manuf. Process., 2021, 36(4), p 419–425.

    Article  CAS  Google Scholar 

  33. S.M. Oh and Y.K. Sun, Effect of Mo-Doped LiFePO4 Positive Electrode Material for Lithium Batteries, J. Electrochem. Sci. Technol., 2012, 3(4), p 172–177.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Tianjin Technical Expert Project (grant number 22YDTPJC00270), the Major Innovation Project of Leading Enterprises of Tianjin (grant number 22YDPYGX00050), the Tianjin Science and Technology planning Project (grant number 21JCQNJC0O810) and Tianjin Municipal Education Commission Scientific Research Project (grant number 2019ZD20) for the financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Guan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, L., Guan, Z., Wang, L. et al. Synthesis and Electrochemical Properties of Molybdenum-Doped LiMn0.6Fe0.4PO4 Cathode Materials. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-023-08901-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08901-6

Keywords

Navigation