Skip to main content
Log in

Microstructure Evolution on the Surface of Fe-20Mn-6Al-0.6C-0.15Si Austenitic Low-Density Steel during Heat Treatment

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Microstructure evolution on the surface of Fe-20Mn-6Al-0.6C-0.15Si austenitic low-density steel was studied by comparing with the microstructure at the core. In the present study, the austenite grain growth was in situ observed using laser scanning confocal microscope (LSCM). The microstructure of specimens on surface and at core was analyzed after LSCM experiments. The distribution of Mn and Al along axial direction was analyzed. The results show that the volatilization of Mn on the specimen surface during isothermal holding at high temperatures varying from 900 to 1200 °C results in a low stability of the austenite on the specimen surface, leading to the transformation of less stable austenite to ferrite during subsequent cooling process. The ferrite fraction on the specimen surface increases with isothermal temperature, indicating more Mn volatilization at higher temperature. In addition, because Mn volatilizes during isothermal holding at high temperatures, the austenite grain growth on the surface is different from that at the core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.T. Park, Tensile Deformation of Low-Density Fe-Mn-Al-C Austenitic Steels at Ambient Temperature, Scr. Mater., 2013, 68(6), p 375–379.

    Article  CAS  Google Scholar 

  2. D.W. Suh and N.J. Kim, Low-Density Steels, Scr. Mater., 2013, 68(6).

  3. S. Hu, Z. Zheng, W. Yang, and H. Yang, Fe-Mn-C-Al Low-Density Steel for Structural Materials: A Review of Alloying, Heat Treatment, Microstructure, and Mechanical Properties, Steel Res. Int., 2022, 93(9), p 2200191.

    Article  CAS  Google Scholar 

  4. Y. Feng, R. Song, Z. Pei, R. Song, and G. Dou, Effect of Aging Isothermal Time on the Microstructure and Room-Temperature Impact Toughness of Fe-24.8Mn-7.3Al-1.2C Austenitic Steel with κ-Carbides Precipitation, Met. Mater. Int., 2018, 24(5), p 1012–1023.

    Article  CAS  Google Scholar 

  5. S. Chen, R. Rana, A. Haldar, and R.K. Ray, Current State of Fe-Mn-Al-C Low Density Steels, Prog. Mater. Sci., 2017, 89, p 345–391.

    Article  CAS  Google Scholar 

  6. R. Rana, Low-Density Steels, JOM, 2014, 66(9), p 1730–1733.

    Article  Google Scholar 

  7. B. Kim, S. Jeong, S.J. Park, J. Moon, and C. Lee, Roles of (Fe, Mn)3Al Precipitates and MBIP on the Hot Ductility Behavior of Fe-30Mn-9Al-0.9C Lightweight Steels, Met. Mater. Int., 2019, 25(4), p 1019–1026.

    Article  CAS  Google Scholar 

  8. J. Zhang, Y. Jiang, C. Hu, G. Ji, C. Song, and Q. Zhai, Effect of Cr on Phase Transformation Behavior of Austenite in Fe-20Mn-9Al-1.2C-XCr Low-Density Steels During Isothermal Aging, Met. Mater. Int., 2022, 28(11), p 2583–2595.

    Article  Google Scholar 

  9. P. Wan, H. Yu, F. Li, P. Gao, L. Zhang, and Z. Zhao, Hot Deformation Behaviors and Process Parameters Optimization of Low-Density High-Strength Fe-Mn-Al-C Alloy Steel, Met. Mater. Int., 2022, 28(10), p 2498–2512.

    Article  CAS  Google Scholar 

  10. Y.P. Li, R.B. Song, E.D. Wen, and F.Q. Yang, Hot Deformation and Dynamic Recrystallization Behavior of Austenite-Based Low-Density Fe-Mn-Al-C Steel, Acta Metall. Sin. Engl. Lett., 2016, 29(5), p 441–449.

    Article  CAS  Google Scholar 

  11. K.T. Park, S.W. Hwang, C.Y. Son, and J.K. Lee, Effects of Heat Treatment on Microstructure and Tensile Properties of a Fe-27Mn-12Al-0.8C Low-Density Steel, JOM, 2014, 66(9), p 1828–1836.

    Article  CAS  Google Scholar 

  12. H. Jung, G. Lee, M. Koo, H. Song, W.S. Ko, and S.S. Sohn, Effects of Mn Segregations on Intergranular Fracture in a Medium-Mn Low-Density Steel, Steel Res. Int., 2023, 94(2), p 2200240.

    Article  CAS  Google Scholar 

  13. I. Hwang, D. Kim, M. Kang, J.H. Kwak, and Y.M. Kim, Resistance Spot Weldability of Lightweight Steel with a High Al Content, Met. Mater. Int., 2017, 23(2), p 341–349.

    Article  CAS  Google Scholar 

  14. S. Guo, H. Zhu, J. Zhao, M. Song, J. Li, and Z. Xue, Effects of Nitrogen on the Microstructure and Mechanical Properties of Fe-28Mn-10Al-0.8 C Low-Density Steel, Steel Res. Int., 2022, 93(8), p 2100643.

    Article  CAS  Google Scholar 

  15. Y.T. Huo, Y.L. He, N.Q. Zhu, M.L. Ding, R.D. Liu, and Y. Zhang, Deformation Mechanism Investigation on Low Density 18Mn Steels under Different Solid Solution Treatments, Metals., 2021, 11(9), p 1497.

    Article  CAS  Google Scholar 

  16. S.W. Park, J.Y. Park, K.M. Cho, J.H. Jang, S.J. Park, J. Moon, T.H. Lee, and J.H. Shin, Effect of Mn and C on Age Hardening of Fe-Mn-Al-C Lightweight Steels, Met. Mater. Int., 2019, 25(3), p 683–696.

    Article  CAS  Google Scholar 

  17. D.T. Pierce, D.M. Field, K.R. Limmer, T. Muth, and K.M. Sebeck, Hot Deformation Behavior of an Industrially Cast Large Grained Low Density Austenitic Steel, Mater. Sci. Eng. A, 2021, 825, p 141785.

    Article  CAS  Google Scholar 

  18. J. Pang, Z. Zhou, Z. Zhao, D. Tang, J. Liang, and Q. He, Tensile Behavior and Deformation Mechanism of Fe-Mn-Al-C Low Density Steel with High Strength and High Plasticity, Metals., 2019, 9(8), p 897.

    Article  CAS  Google Scholar 

  19. J. Lee, S. Park, H. Kim, S.J. Park, K. Lee, M.Y. Kim, P.P. Madakashira, and H.N. Han, Simulation of κ-Carbide Precipitation Kinetics in Aged Low-Density Fe-Mn-Al-C Steels and Its Effects on Strengthening, Met. Mater. Int., 2018, 24(4), p 702–710.

    Article  CAS  Google Scholar 

  20. D. Xu, C. Ji, H. Zhao, D. Ju, and M. Zhu, A New Study on the Growth Behavior of Austenite Grains during Heating Processes, Sci. Rep., 2017, 7(1), p 3968–4013.

    Article  Google Scholar 

  21. Q. Gao, F. Qu, H. Zhang, and Q. Huo, Austenite Grain Growth in Alumina-Forming Austenitic Steel, J. Mater. Res., 2016, 31(12), p 1732–1740.

    Article  CAS  Google Scholar 

  22. F. Meng, J. Wang, J. Guo, K. Fu, M. Zhao, Z. Wang, and Z. Xu, Growth Behavior and Kinetics of Austenite Grain in Low-Carbon High-Strength Steel with Copper, Mater. Res. Express, 2021, 8(9), p 96504.

    Article  CAS  Google Scholar 

  23. W. Mu, P. Hedström, H. Shibata, P.G. Jönsson, and K. Nakajima, High-Temperature Confocal Laser Scanning Microscopy Studies of Ferrite Formation in Inclusion-Engineered Steels: A Review, JOM, 2018, 70(10), p 2283–2295.

    Article  CAS  Google Scholar 

  24. W. Wang, Z. An, S. Luo, and M. Zhu, In-Situ Observation of Peritectic Solidification of Fe-Mn-Al-C Steel with Medium Manganese, J. Alloys Compd., 2022, 909, p 164750.

    Article  CAS  Google Scholar 

  25. J. Tian, H. Wang, M. Zhu, M. Zhou, Q. Zhang, X. Su, A. Guo, and G. Xu, Improving Mechanical Properties in High-Carbon Pearlitic Steels by Replacing Partial V with Nb, Mater. Sci. Eng. A, 2022, 834, p 142622.

    Article  CAS  Google Scholar 

  26. N. Yan, S. Yu, and Y. Chen, In Situ Observation of Austenite Grain Growth and Transformation Temperature in Coarse Grain Heat Affected Zone of Ce-Alloyed Weld Metal, J. Rare Earths, 2017, 35(2), p 203–210.

    Article  CAS  Google Scholar 

  27. Q. Zhang, H. Wang, M. Zhu, X. Su, M.I. Zhou, and X. Guang, In-Situ Observation on Austenite Grain Growth of a Nb Microalloyed High-Carbon Steel, J. Iron Steel Res., 2022, 34(08), p 840–847.

    CAS  Google Scholar 

  28. N. Fuchs, P. Krajewski, and C. Bernhard, In-Situ Observation of Austenite Grain Growth in Plain Carbon Steels by Means of High-Temperature Laser Scanning Confocal Microscopy, BHM Berg-Hüttenmänn. Monatshefte, 2015, 160(5), p 214–220.

    Article  CAS  Google Scholar 

  29. R.K. Wild, Vacuum Annealing of Stainless Steel at Temperatures between 770 and 1470K, Corros. Sci., 1974, 14(10), p 575–586.

    Article  CAS  Google Scholar 

  30. A.F. Smith and R. Hales, Diffusion of Manganese in Type 316 Austenitic Stainless Steel, Met. Sci., 1975, 1(9), p 181–184.

    Google Scholar 

  31. N. Fuchs and C. Bernhard, Potential and Limitations of Direct Austenite Grain Growth Measurement by Means of HT-LSCM, Mater. Today Commun., 2021, 28, p 102468.

    Article  CAS  Google Scholar 

  32. C.G. de Andrés, F.G. Caballero, C. Capdevila and M.D. San, Revealing Austenite Grain Boundaries by Thermal Etching: Advantages and Disadvantages, Mater Charact, 2002, 49(2), p 121–127.

    Article  Google Scholar 

  33. B. Aashranth, G. Shankar, D. Samantaray, and S. Suwas, The Role of Hot Deformation Texture on Dynamic Transformation of Austenite to Ferrite in a 9%Cr Alloy Steel, JOM, 2022, 74(6), p 2377–2385.

    Article  CAS  Google Scholar 

  34. S. Martin, O. Fabrichnaya, and D. Rafaja, Prediction of the Local Deformation Mechanisms in Metastable Austenitic Steels from the Local Concentration of the Main Alloying Elements, Mater. Lett., 2015, 159, p 484–488.

    Article  CAS  Google Scholar 

  35. J. Chu, Y. Bao, X. Li, M. Wang, and F. Gao, Kinetic Study of Mn Vacuum Evaporation from Mn Steel Melts, Sep. Purif. Technol., 2021, 255, p 117698.

    Article  CAS  Google Scholar 

  36. G. Coccia Lecis, C. Lenardi, and A. Sabatini, The Effect of Mn-Depleted Surface Layer on the Corrosion Resistance of Shape Memory Fe-Mn-Si-Cr Alloys, Metall. Mater. Trans. A, 1997, 28(5), p 1219–1222.

    Article  Google Scholar 

  37. A.M. De Sousa Malafaia, L. Latu-Romain, and Y. Wouters, High Temperature Oxidation Resistance Improvement in an FeMnSiCrNi Alloy by Mn-Depletion under Vacuum Annealing, Mater. Lett., 2019, 241, p 164–167.

    Article  Google Scholar 

  38. B. Qian, H. Peng, and Y. Wen, A Novel Sandwich Fe-Mn Damping Alloy with Ferrite Shell Prepared by Vacuum Annealing, Smart Mater. Struct., 2018, 27(4), p 045005.

    Article  Google Scholar 

  39. F. Lan, C. Zhuang, C. Li, J. Chen, G. Yang, and H. Yao, Study on Manganese Volatilization Behavior of Fe-Mn-C-Al Twinning-Induced Plasticity Steel, High Temp. Mater. Process., 2021, 40(1), p 461–470.

    Article  CAS  Google Scholar 

  40. S. Catteau, T. Sourmail, and A. Moine, Dilatometric Study of Phase Transformations in Steels: Some Issues, Mater. Perform. Charact., 2016, 5(5), p 564–584.

    CAS  Google Scholar 

  41. Y. Tomota, N. Sekido, S. Harjo, T. Kawasaki, W. Gong, and A. Taniyama, In Situ Observations of Transformation Behavior upon Heating for a 1.5Mn-1.5Si-0.2C Steel-Comparison Between Neutron Diffraction, XRD EBSD Dilatometry-ISIJ Int., 2017, 57(12), p 2237–2244.

    Article  CAS  Google Scholar 

  42. P. Jimbert, T. Guraya, I. Kaltzakorta, T. Gutiérrez, R. Elvira, and K.L. Tafaghodi, Different Phenomena Encountered during Dilatometry of Low-Density Steels, J. Mater. Eng. Perform., 2022, 1, p 1–1.

    Google Scholar 

  43. J. Chu and Y. Bao, Volatilization Behavior of Manganese from Molten Steel with Different Alloying Methods in Vacuum, Metals, 2020, 10(10), p 1348.

    Article  CAS  Google Scholar 

  44. S. Khare and P. Mahajan, Controlling the Ferrite Kinetics in Fe-C-Mn Alloys, Met. Mater. Int., 2015, 21(3), p 446–452.

    Article  CAS  Google Scholar 

  45. M. Khorrami, A.Z. Hanzaki, H.R. Abedi, M. Moallemi, J. Mola, and G. Chen, On the Effect of Mn-Content on the Strength-Ductility Balance in Ni-Free High N Transformation Induced Plasticity Steels, Mater. Sci. Eng. A, 2021, 814, p 141260.

    Article  CAS  Google Scholar 

  46. H. Fang, S. Van Der Zwaag, and N.H. Van Dijk, A Novel 3D Mixed-Mode Multigrain Model with Efficient Implementation of Solute Drag Applied to Austenite-Ferrite Phase Transformations in Fe-C-Mn Alloys, Acta Mater., 2021, 212, p 116897.

    Article  CAS  Google Scholar 

  47. Easterling, K.E. Phase Transformations in Metals and Alloys, Third Edition (Revised Reprint), Phase Transformations in Metals and Alloys, Third Edition (Revised Reprint), (1992).

  48. M. Bhattacharyya, B. Langelier, G.R. Purdy, and H.S. Zurob, Effect of Mn and C on Grain Growth in Mn Steels, Metall. Mater. Trans. Phys. Metall. Mater. Sci., 2019, 50(2), p 905–914.

    Article  CAS  Google Scholar 

  49. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels, Metall. Mater. Trans. A, 2009, 40(13), p 3076–3090.

    Article  Google Scholar 

  50. J.K. Kim and B.C. De Cooman, Stacking Fault Energy and Deformation Mechanisms in Fe-XMn-0.6C-YAl TWIP Steel, Mater. Sci. Eng. A, 2016, 676, p 216–231.

    Article  CAS  Google Scholar 

  51. M. Bhattacharyya, Y. Brechet, G.R. Purdy, and H.S. Zurob, Austenite Grain Growth in High Manganese Steels, Metall. Mater. Trans. A, 2019, 50(12), p 5760–5766.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (No. U20A20270), the Joint Development Project from Lianyuan Iron and Steel Company Limited (2020-13#) and China Postdoctoral Science Foundation (No. 2022M722486). We would like to thank Dr. Zhen Wang at the Analytical & Testing Center of Wuhan University of Science and Technology for the help on EBSD analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Chen, G., Shen, Y. et al. Microstructure Evolution on the Surface of Fe-20Mn-6Al-0.6C-0.15Si Austenitic Low-Density Steel during Heat Treatment. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08803-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08803-7

Keywords

Navigation