Skip to main content
Log in

Study on the Corrosion Behavior and Mechanism of CoCrNi Medium-Entropy Alloy in NaCl Solution with Various NaHSO3 Concentrations

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrosion resistance and passivation property of CoCrNi MEA in NaCl solution containing various concentrations of NaHSO3 were systematically investigated. The results reveal that the presence of HSO3 increases defects within the passive film, thins its thickness and disrupts the stability and integrity of the film. Increasing HSO3 concentration reduces the passivity of the MEA, facilitates the nucleation of metastable pitting and increases the tendency of metastable pitting to evolve into stable pitting, as well the corrosion rate increases significantly. Moreover, the corrosion of the MEA is aggravated by the micro-galvanic corrosion cells constituted between the substrate and the oxide inclusion. In addition, the MEA suffers a significant selective dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng., 2004, 375–377, p 213–218.

    Article  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303.

    Article  CAS  Google Scholar 

  3. X.L. An, C.L. Chu, L. Zhou, J. Ji, B.L. Shen, and P.K. Chu, Controlling the Corrosion Behavior of CoNiFe Medium Entropy Alloy by Grain Boundary Engineering, Mater. Charact., 2020, 164, p 110323.

    Article  CAS  Google Scholar 

  4. B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H.B. Bei, Z.G. Wu, E.P. George, and R.O. Ritchie, Exceptional Damage-Tolerance of a Medium-Entropy Alloy CrCoNi at Cryogenic Temperatures, Nat. Commun., 2016, 7, p 10602.

    Article  CAS  Google Scholar 

  5. K.J. Lu, C. Ankur, W. Mario, T.A. Srinivasan, S. Mike, L. Guillaume, F. Jens, K. Alexander, H. Martin, and A. Jarir, Superior Low-Cycle Fatigue Properties of CrCoNi Compared to CoCrFeMnNi, Scr. Mater., 2021, 194, p 113667.

    Article  CAS  Google Scholar 

  6. L.J. Yang, P.S. Guo, Z.G. Niu, F.X. Li, Z.L. Song, C. Xu, H.N. Liu, W.S. Sun, and T.T. Ren, Influence of Mg on the Mechanical Properties and Degradation Performance of As-Extruded Zn-Mg-Ca alloys: In Vitro and In Vivo Behavior, J. Mech. Behav. Biomed. Mater., 2019, 95, p 220–231.

    Article  CAS  Google Scholar 

  7. X. Zhang, Y. Gui, M.J. Lai, X.C. Lu, J. Gu, F. Wang, T. Yang, Z.W. Wang, and M. Song, Enhanced Strength-Ductility Synergy of Medium-Entropy Alloys via Multiple Level Gradient Structures, Int. J. Plast., 2023, 164, p 103592.

    Article  CAS  Google Scholar 

  8. S.Y. Chen, E. Gad, L.H. Zhang, N. Lam, S.Q. Xu, and G.X. Lu, Experiments on an Ice Ball Impacting onto a Rigid Target, Int. J. Impact Eng., 2022, 167, p 104281.

    Article  Google Scholar 

  9. J.L. Dong, F.C. Li, X.Q. Wu, G.J. Wang, X.P. Zhang, B.Q. Luo, X.M. Chen, F.L. Tan, Y.H. Li, M.Q. Jian, J.H. Zhao, C.G. Huang, and C.W. Sun, Insights into Protective Performance of CoCrNi Medium Entropy Alloy Coating Subjected to Supersonic Micro-ballistic Impact, Int. J. Impact Eng., 2023, 180, p 104714.

    Article  Google Scholar 

  10. C.G. Liu, X.W. Qiu, J. Peng, and Z.S. Wang, Structure and Properties of Laser Cladding CoCrNi Multicomponent Alloy Coating Used in Rain Gauge, Opt. Laser. Eng., 2023, 163, p 107458.

    Article  Google Scholar 

  11. X.B. Zhang, Y.G. Tong, Y.L. Hu, X.B. Liang, Y.X. Chen, K.M. Wang, M.J. Zhang, and J.G. Xu, Structure and Properties of Laser Cladding CoCrNi Multicomponent Alloy Coating Used in Rain Gauge, Lubricants, 2022, 10, p 344.

    Article  CAS  Google Scholar 

  12. Z.J. Zhang, B.S. Zhang, S.S. Zhu, X.W. Tao, H.L. Tian, and Z.Z. Wang, Achieving Enhanced Wear Resistance in CoCrNi Medium-Entropy Alloy Co-Alloyed with Multi-elements, Mater. Lett., 2022, 313, p 131650.

    Article  CAS  Google Scholar 

  13. P. Sathiyamoorthi, J. Basu, S. Kashyap, K. Pradeepd, K.G. Pradeep, and R.S. Kottada, Thermal Stability and Grain Boundary Strengthening in Ultrafine-Grained CoCrFeNi High Entropy Alloy Composite, Mater. Des., 2017, 134, p 426–433.

    Article  CAS  Google Scholar 

  14. C.Y. Lu, M.Y. Li, P.Y. Xiu, X. Wang, G. Velisa, L. Jiang, K.L. More, J.D. Poplawsky, Y.Q. Chang, Y.W. Zhang, and L.M. Wang, High Radiation Tolerance of an Ultrastrong Nanostructured Nicocr Alloy with Stable Dispersed Nanooxides and Fine Grain Structure, J. Nucl. Mater., 2021, 557, p 153316.

    Article  CAS  Google Scholar 

  15. K.J. Lu, F. Knöpfle, A. Chauhan, D. Litvinov, M. Schneider, G. Laplanche, and J. Aktaa, Elevated-Temperature Cyclic Deformation Mechanisms of CoCrNi in Comparison to CoCrFeMnNi, Scr. Mater., 2022, 220, p 114926.

    Article  CAS  Google Scholar 

  16. G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George, Reasons for the Superior Mechanical Properties of Medium-Entropy CoCrNi Compared to High-Entropy CrMnFeCoNi, Acta. Mater., 2017, 128, p 292–303.

    Article  CAS  Google Scholar 

  17. M. Liu, Finite Element Analysis of Pitting Corrosion on Mechanical Behavior of E690 Steel Panel, Anti-Corros. Method. Mater., 2022, 69, p 351–361.

    Article  CAS  Google Scholar 

  18. N. Birbilis, S. Choudhary, J.R. Scully, and M.L. Taheri, A Perspective on Corrosion of Multi-principal Element Alloys, npj Mater. Degrad., 2021, 5, p 1–8.

    Article  Google Scholar 

  19. O. Mohamed, M. Egilmez, and W. Abuzaid, Stabilization of the Ferromagnetic State in CoCrNi Medium Entropy Alloy Thin Films, Appl. Phys. A, 2022, 128, p 221.

    Article  CAS  Google Scholar 

  20. F. Weng, Y.X. Chew, W.K. Ong, Y.J. Man, S. Sui, C.L. Tan, M.H. Goh, and G.J. Bi, Enhanced Corrosion Resistance of Laser Aided Additive Manufactured CoCrNi Medium Entropy Alloys with Oxide Inclusion, Corros. Sci., 2022, 195, p 109965.

    Article  CAS  Google Scholar 

  21. F. He, Z.P. Le, M. Zhu, L. Liu, X. Zhang, and G.T. Zhu, Effect of Annealing Temperature on Microstructure and Corrosion Behavior of CoCrNi Medium-Entropy Alloy in 3.5 wt.% NaCl Solution, Int. J. Electrochem. Sci., 2022, 17, p 220539.

    Article  CAS  Google Scholar 

  22. D.A. Burgard and C.R.M. Bria, Bridge-Based Sensing of NOX and SO2 Emissions from Ocean-Going Ships, Atmos. Environ., 2016, 136, p 56–60.

    Article  Google Scholar 

  23. L. Jiang, S.X. He, Y.Z. Cui, H.F. Zhou, and H. Kong, Effects of the Socio-Economic Influencing Factors on SO2 Pollution in Chinese Cities: A Spatial Econometric Analysis Based on Satellite Observed Data, J. Environ. Manag., 2020, 268, p 110667.

    Article  CAS  Google Scholar 

  24. H.C. Ma, C.W. Du, Z.Y. Liu, and X.G. Li, Effect of SO2 Content on SCC Behavior of E690 High-Strength Steel in SO2-Polluted Marine Atmosphere, Ocean Eng., 2018, 164, p 256–262.

    Article  Google Scholar 

  25. M. Esmaily, D.B. Blücher, R.W. Lindstrom, J.E. Svensson, and L.G. Johansson, The Influence of SO2 on the Corrosion of Mg and Mg-Al Alloys, J. Electrochem. Soc., 2015, 162, p 260–269.

    Article  Google Scholar 

  26. K. Gong, M. Wu, and G.X. Liu, Stress Corrosion Cracking Behavior of Rusted X100 Steel under the Combined Action of Cl and HSO3 in a Wet-Dry Cycle Environment, Corros. Sci., 2020, 165, p 108382.

    Article  CAS  Google Scholar 

  27. C.F. Dong, Z.Y. Liu, X.G. Li, and Y.F. Cheng, Effects of Hydrogen Charging on the Susceptibility of X100 Pipeline Steel to Hydrogen Induced Cracking, Int. J. Hydrog. Energy, 2009, 34, p 9879–9884.

    Article  CAS  Google Scholar 

  28. Z.L. Xu, H. Zhang, X.J. Du, Y.Z. He, H. Luo, G.S. Song, L. Mao, T.W. Zhou, and L.L. Wang, Corrosion Resistance Enhancement of CoCrFeMnNi High-Entropy Alloy Fabricated by Additive Manufacturing, Corros. Sci., 2020, 177, p 108954.

    Article  CAS  Google Scholar 

  29. A.Q. Fu and Y.F. Cheng, Electrochemical Polarization Behavior of X70 Steel in Thin Carbonate/Bicarbonate Solution Layers Trapped Under a Disbonded Coating and Its Implication on Pipeline SCC, Corros. Sci., 2010, 52, p 2511–2518.

    Article  CAS  Google Scholar 

  30. C.H. Tasu, M.C. Tsai, and W.L. Wang, Microstructures of FeCoNiMo and Alloys, and the Corrosion Properties in 1 M Nitric Acid and 1 M Sodium Chloride Solutions, Materials, 2022, 15, p 888.

    Article  Google Scholar 

  31. C. Qiao, M.N. Wang, L. Hao, X.L. Jiang, X.H. Liu, C. Thee, and X.Z. An, In-Situ Eis Study on the Initial Corrosion Evolution Behavior of SAC305 Solder Alloy Covered with NaCl Solution, J. Alloys Compd., 2021, 852, p 156953.

    Article  CAS  Google Scholar 

  32. H. Luo, H.Z. Su, B.S. Li, and G.B. Ying, Electrochemical and Passive Behaviour of Tin Alloyed Ferritic Stainless Steel In Concrete Environment, Appl. Surf. Sci., 2018, 439, p 232–239.

    Article  CAS  Google Scholar 

  33. W.R. Wang, J.Q. Wang, Z.H. Sun, J.G. Li, L.F. Li, X. Song, X.D. Wen, L. Xie, and X. Yang, Effect of Mo and Aging Temperature on Corrosion Behavior of (CoCrFeNi)100xMox High-entropy Alloys, J. Alloys Compd., 2020, 812, p 152139.

    Article  CAS  Google Scholar 

  34. D.D. McDonald, The Point Defect Model for the Passive State, J. Electrochem. Soc., 1992, 139, p 3434–3449.

    Article  Google Scholar 

  35. Q.C. Zhao, Z.M. Pan, X.F. Wang, H. Luo, Y. Liu, and X.G. Li, Corrosion and Passive Behavior of AlxCrFeNi3-x (x = 06, 08, 10) Eutectic High Entropy Alloys in Chloride Environment, Corros. Sci., 2022, 208, p 110666.

    Article  CAS  Google Scholar 

  36. C. Liu, Q. Bi, and A. Matthews, EIS Comparision on Corrosion Performance of PVD TiN and CrN Coated Mild Steel in 0.5 M NaCl Aqueous Solution, Corros. Sci., 2001, 43, p 1953–1961.

    Article  CAS  Google Scholar 

  37. J.J. Shi, Y.Q. Zou, and J. Ming, Effect of DC Stray Current on Electrochemical Behavior of Low-Carbon Steel and 10% Cr Steel in Saturated Ca(OH)2 Solution, Corros. Sci., 2020, 169, p 108610.

    Article  CAS  Google Scholar 

  38. R. Nidhimure, D. Shiraishi, and Y. Maeda, Hydrogen Permeation and Corrosion Behavior of High Strength Steel MCM 430 in Cyclic Wet-Dry SO2 Environment, Corros. Sci., 2004, 46, p 225–243.

    Article  Google Scholar 

  39. M. Liu, J.N. Zhu, V.A. Popovich, E. Borisov, J.M.C. Mol, and Y. Gonzalez-Garcia, Passive Film Formation and Corrosion Resistance of Laser-Powder Bed Fusion Fabricated NiTi Shape Memory Alloys, J. Mater. Res. Technol., 2023, 23, p 2991–3006.

    Article  CAS  Google Scholar 

  40. Y.Z. Shi, J.K. Mo, F.Y. Zhang, B. Yang, P.K. Liaw, and Y. Zhao, In-Situ Visualization of Corrosion Behavior of AlxCoCrFeNi High-Entropy Alloys during Electrochemical Polarization, J. Alloys Compd., 2020, 844, p 156014.

    Article  CAS  Google Scholar 

  41. L. Sun, T.Y. Zhao, J. Qiu, Y.T. Sun, K.J. Li, H.B. Zheng, Y.M. Jiang, Y.H. Li, J. Li, W. Li, and D.D. Macdonald, Point Defect Model for Passivity Breakdown on Hyper-Duplex Stainless Steel 2707 in Solutions Containing Bromide at Different Temperatures, Corros. Sci., 2022, 194, p 109959.

    Article  CAS  Google Scholar 

  42. M. Bojinov, Modelling the Formation and Growth of Anodic Passive Films on Metals in Concentrated Acid Solutions, J. Solid State Electrochem., 1997, 1, p 161–171.

    Article  CAS  Google Scholar 

  43. M. Hasegawa and M. Osawa, Anomalous Corrosion of Hydrogen-Containing Ferritic Steels in Aqueous Acid Solution, Corrosion, 2015, 39, p 115–120.

    Article  Google Scholar 

  44. Y.C. Cui, L.Y. Chen, L.Q. Wang, J. Cheng, and L.C. Zhang, Response of the Metastable Pitting Corrosion of Laser Powder Bed Fusion Produced Ti-6Al-4V to H+ Concentration Changes, Metals, 2023, 13, p 514.

    Article  CAS  Google Scholar 

  45. M. Javidi, S.M.S. Haghshenas, and M.H. Shariat, CO2 Corrosion Behavior of Sensitized 304 and 316 Austenitic Stainless Steels in 3.5 wt.% NaCl Solution and Presence of H2S, Corros. Sci., 2020, 163, p 108230.

    Article  CAS  Google Scholar 

  46. D. Guo, J. Chen, X. Chen, Q. Shi, V.A.M. Cristino, C.T. Kwok, L.M. Tam, H. Qian, D. Zhang, and X. Li, Pitting Corrosion Behavior of Friction-Surfaced 17–4PH Stainless Steel Coatings with and Without Subsequent Heat Treatment, Corros. Sci., 2021, 193, p 109887.

    Article  CAS  Google Scholar 

  47. G. Bai, S. Lu, D. Li, and Y.Y. Li, Effects of Boron on Microstructure and Metastable Pitting Corrosion Behavior of Super 304H Austenitic Stainless Steel, J. Electrochem. Soc., 2015, 162, p 473–481.

    Article  Google Scholar 

  48. N. Du, W. Tian, Q. Zhao, and S. Chen, Pitting Corrosion Dynamics and Mechanisms of 304 Stainless Steel in 3.5% NaCl Solution, Acta Metal. Sin., 2013, 48, p 807–814.

    Article  Google Scholar 

  49. J.G. Yu, J.L. Luo, and P.R. Norton, Electrochemical Investigation of the Effects of Hydrogen on the Stability of the Passive Film on Iron, Electrochim. Acta., 2002, 47, p 1527–1536.

    Article  CAS  Google Scholar 

  50. Y.M. Tang, Y. Zuo, and X.H. Zhao, the Metastable Pitting Behaviors of Mild Steel in Bicarbonate and Nitrite Solutions Containing Cl, Corros. Sci., 2008, 50, p 989–994.

    Article  CAS  Google Scholar 

  51. L. Wei and W.M. Qin, Corrosion Mechanism of Eutectic High-Entropy Alloy Induced by Micro-galvanic Corrosion in Sulfuric Acid Solution, Corros. Sci., 2022, 206, p 110525.

    Article  CAS  Google Scholar 

  52. C.B. Nascimento, U. Donatus, C.T. Ríos, and R.A. Antunes, Passive Film Composition and Stability of CoCrFeNi and CoCrFeNiAl High Entropy Alloys in Chloride Solution, Mater. Chem. Phys., 2021, 267, p 124582.

    Article  CAS  Google Scholar 

  53. J. Li, C.W. Du, Z.Y. Liu, X.G. Li, and M. Liu, Effect of Microstructure on the Corrosion Resistance of 2205 Duplex Stainless Steel. Part 1: Microstructure Evolution During Isothermal Aging at 850 °C and Evaluation of Anticorrosion Properties by Methods of Cyclic Potentiodynamic Polarization and Electrochemical Impedance Tests, Constr. Build. Mater., 2018, 189, p 1286–1293.

    Article  CAS  Google Scholar 

  54. M. Zhu, C.W. Du, X. Li, Z. Liu, L. Hao, and D. Zhang, Effect of AC on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in Carbonate Bicarbonate Solution, Corros. Sci., 2014, 87, p 224–232.

    Article  CAS  Google Scholar 

  55. F.T. Cao, Z.Q. He, T.G. Wang, Q.X. Fan, Y.M. Liu, J.T. Tao, G.Y. Gao, X.B. Luo, J.B. Peng, and S.S. Cai, The Corrosion Behavior of Sn-58Bi Alloy in DL-Malic Acid Solutions with Various Concentrations, Mater. Lett., 2022, 314, p 131883.

    Article  CAS  Google Scholar 

  56. H. Feng, H.B. Li, X.L. Wu, Z.H. Jiang, S. Zhao, T. Zhang, D.K. Xu, S.C. Zhang, H.C. Zhu, B.B. Zhang, and M.X. Yang, Effect of Nitrogen on Corrosion Behavior of a Novel High Nitrogen Medium-Entropy Alloy CrCoNiN Manufactured by Pressurized Metallurgy, J. Mater. Sci. Technol., 2018, 34, p 1781–1790.

    Article  CAS  Google Scholar 

  57. Y. Wang, L.H. Zhang, B. Zhang, H.Y. Tian, X. Wei, and Z.Y. Gui, Passivation Behavior of CoCrNiZrx Medium-Entropy Alloy in the Sulfuric Acid Solutions, J. Electroanal. Chem., 2021, 899, p 115693.

    Article  CAS  Google Scholar 

  58. Y. Wang, X. Zhang, L. Cheng, J. Liu, T. Hou, and K. Wu, Correlation between Active/Inactive (Ca, Mg, Al)-Ox-Sy Inclusions and Localised Marine Corrosion of EH36 Steels, J. Mater. Res. Technol., 2021, 13, p 2419–2432.

    Article  CAS  Google Scholar 

  59. M. Zhu, B.Z. Zhao, Y.F. Yuan, S.Y. Guo, and G.Y. Wei, Study on Corrosion Behavior and Mechanism of CoCrFeMnNi HEA Interfered by AC Current in Simulated Alkaline Soil Environment, J. Electroanal. Chem., 2021, 882, p 115026.

    Article  CAS  Google Scholar 

  60. Y. Pan, B.Z. Sun, Z.Y. Liu, W. Wu, and X.G. Li, Hydrogen Effects on Passivation and Scc of 2205 Dss in Acidified Simulated Seawater, Corros. Sci., 2022, 208, p 110640.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51871026) and the Fundamental Research Funds of Zhejiang Sci-Tech University of China (No. 22242293-Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K.X., Zhu, M., Yuan, Y.F. et al. Study on the Corrosion Behavior and Mechanism of CoCrNi Medium-Entropy Alloy in NaCl Solution with Various NaHSO3 Concentrations. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08747-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08747-y

Keywords

Navigation