Skip to main content
Log in

Effect of Magnesium Carbonate and Phosphoric Acid Concentration on Microstructure and Corrosion Behavior of Magnesium Phosphate Coating

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this investigation, the effect of variations of phosphating bath (magnesium carbonate and phosphoric acid) concentration was studied on the properties of magnesium phosphate coating. The formation of the coating and morphological evolution were examined by XRD and SEM, respectively. The coating thickness was measured using a magnetic thickness gauge. Potentiodynamic polarization curves were used to investigate corrosion behavior. The findings revealed that optimizing both the phosphoric acid and magnesium carbonate concentration affects the nucleation and growth of the phosphate crystals and considerably affects the coating thickness and porosity. Therefore, optimizing these constituents is essential to decrease the corrosion rate. The heaviest coating thickness, lowest porosity and the lowest corrosion rate were observed at 23 mL/L of phosphoric acid and 9 g/L of magnesium carbonate concentrations. Variations of magnesium carbonate concentration was a more effective factor than the phosphoric acid.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. M. Manna, Characterisation of Phosphate Coatings Obtained Using Nitric Acid Free Phosphate Solution on Three Steel Substrates: An Option to Simulate TMT Rebars Surfaces, Surf. Coat. Technol., 2009, 203, p 1913. https://doi.org/10.1016/j.surfcoat.2009.01.024

    Article  CAS  Google Scholar 

  2. T.K. Rout, H.K. Pradhan, and T. Venugopalan, Enhanced Forming Properties of Galvannealed Steel Sheet by Polymanganese Phosphate Coating, Surf. Coat. Technol., 2006, 201, p 3496. https://doi.org/10.1016/j.surfcoat.2006.07.260

    Article  CAS  Google Scholar 

  3. M. Zubielewicz, E.K. Tarnawska, and A. Kozłowska, Protective Properties of Organic Phosphate-Pigmented Coatings on Phosphated Steel Substrates, Prog. Org. Coat., 2005, 53, p 276–285. https://doi.org/10.1016/j.porgcoat.2005.02.008

    Article  CAS  Google Scholar 

  4. P.E. Tegehall and N.G. Vannerberg, Nucleation and Formation of Zinc Phosphate Conversion Coating on Cold-Rolled Steel, Corros. Sci., 1991, 32, p 635–652. https://doi.org/10.1016/0010-938X(91)90112-3

    Article  CAS  Google Scholar 

  5. J. Flis, J. Mankowski, T. Zakroczymski, and T. Bell, The Formation of Phosphate Coatings on Nitrided Stainless Steel, Corros. Sci., 2001, 43, p 1711–1725. https://doi.org/10.1016/S0010-938X(00)00179-7

    Article  CAS  Google Scholar 

  6. W. Zhou, D. Shan, E.H. Han, and W. Ke, Structure and Formation Mechanism of Phosphate Conversion Coating on Die-Cast AZ91D Magnesium Alloy, Corros. Sci., 2008, 50, p 329–337. https://doi.org/10.1016/j.corsci.2007.08.007

    Article  CAS  Google Scholar 

  7. K. Ogle, A. Tomandl, N. Meddahi, and M. Wolpers, The Alkaline Stability of Phosphate Coatings I: ICP Atomic Emission Spectroelectrochemistry, Corros. Sci., 2004, 46, p 979–995. https://doi.org/10.1016/S0010-938X(03)00182-3

    Article  CAS  Google Scholar 

  8. G.Y. Li, J.S. Lian, L.Y. Niu, Z.H. Jiang, and Q. Jiang, Growth of Zinc Phosphate Coatings on AZ91D Magnesium Alloy, Surf. Coat. Technol., 2006, 201, p 1814. https://doi.org/10.1016/j.surfcoat.2006.03.006

    Article  CAS  Google Scholar 

  9. L.Y. Niu, Z.H. Jiang, G.Y. Li, C.D. Gu, and J.S. Lian, A Study and Application of Zinc Phosphate Coating on AZ91D Magnesium Alloy, Surf. Coat. Technol., 2006, 200, p 3021–3026. https://doi.org/10.1016/j.surfcoat.2004.10.119

    Article  CAS  Google Scholar 

  10. D. Weng, P. Jokiel, A. Uebleis, and H. Boehni, Corrosion and Protection Characteristics of Zinc and Manganese Phosphate Coatings, Surf. Coat. Technol., 1996, 88, p 147. https://doi.org/10.1016/S0257-8972(96)02860-5

    Article  Google Scholar 

  11. S.H.L. Zhang, H.H. Chen, X.L. Zhang, and M.M. Zhang, The Growth of Zinc Phosphate Coatings on 6061-Al Alloy, Surf. Coat. Technol., 2008, 202, p 1674. https://doi.org/10.1016/j.surfcoat.2007.07.037

    Article  CAS  Google Scholar 

  12. M.C.M. Farias, C.A.L. Santos, Z. Panossian, and A. Sinatora, Friction Behavior of Lubricated Zinc Phosphate Coatings, Wear, 2009, 266, p 873–877. https://doi.org/10.1016/j.wear.2008.10.002

    Article  CAS  Google Scholar 

  13. S. Jegannathan, T.S.N.S. Narayanan, K. Ravichandran, and S. Rajeswari, Performance of Zinc Phosphate Coatings Obtained by Cathodic Electrochemical Treatment in Accelerated Corrosion Tests, Electrochim. Acta, 2005, 51, p 247–256. https://doi.org/10.1016/j.electacta.2005.04.020

    Article  CAS  Google Scholar 

  14. G. Li, L. Niu, J. Lian, and Z. Jiang, A Black Phosphate Coating for C1008 Steel, Surf. Coat. Technol., 2004, 176, p 215–221. https://doi.org/10.1016/S0257-8972(03)00736-9

    Article  CAS  Google Scholar 

  15. B.L. Lin, J.T. Lu, and G. Kong, Effect of Molybdate Post-sealing on the Corrosion Resistance of Zinc Phosphate Coatings on Hot-Dip Galvanized Steel, Corros. Sci., 2008, 50, p 962–967. https://doi.org/10.1016/j.corsci.2007.12.002

    Article  CAS  Google Scholar 

  16. X. Sun, D. Susac, R. Li, K.C. Wong, T. Foster, and K.A.R. Mitchell, Some Observations for Effects of Copper on Zinc Phosphate Conversion Coatings on Aluminum Surfaces, Surf. Coat. Technol., 2002, 155, p 46–50. https://doi.org/10.1016/S0257-8972(02)00027-0

    Article  CAS  Google Scholar 

  17. Q. Li, Sh. Xu, J. Hu, Sh. Zhang, X. Zhong, and X. Yang, The Effects to the Structure and Electrochemical Behavior of Zinc Phosphate Conversion Coatings with Ethanolamine on Magnesium Alloy AZ91D, Electrochim. Acta, 2010, 55, p 887–894. https://doi.org/10.1016/j.electacta.2009.06.048

    Article  CAS  Google Scholar 

  18. C.Y. Tsai, J.S. Liu, P.L. Chen, and C.S. Lin, A Two-Step Roll Coating Phosphate/Molybdate Passivation Treatment for Hot-Dip Galvanized Steel Sheet, Corros. Sci., 2010, 52, p 3385–3393. https://doi.org/10.1016/j.corsci.2010.06.020

    Article  CAS  Google Scholar 

  19. V.S. Kathavate and P.P. Deshpande, Role of Nano TiO2 and Nano ZnO Particles on Enhancing the Electrochemical and Mechanical Properties of Electrochemically Deposited Phosphate Coatings, Surf. Coat. Technol., 2020, 394, p 12590. https://doi.org/10.1016/j.surfcoat.2020.125902

    Article  CAS  Google Scholar 

  20. M. Tamilselvi, P. Kamaraj, M. Arthanareeswari, and S. Devikala, Nano Zinc Phosphate Coatings for Enhanced Corrosion Resistance of Mild Steel, Appl. Surf. Sci., 2015, 327, p 218–225. https://doi.org/10.1016/j.apsusc.2014.11.081

    Article  CAS  Google Scholar 

  21. M. Arthanareeswaria, P. Kamarajb, M. Tamilselvic, and S. Devikala, A Low Temperature Nano TiO2 Incorporated Nano Zinc Phosphate Coating on Mild Steel with Enhanced Corrosion Resistance, Mater. Today: Proc., 2018, 5, p 9012–9025. https://doi.org/10.1016/j.matpr.2017.12.349

    Article  CAS  Google Scholar 

  22. B.I. Lin, J.T. Lu, K.O. Gang, and L. Jun, Growth and Corrosion Resistance of Molybdate Modified Zinc Phosphate Conversion Coatings on Hot-Dip Galvanized Steel, Trans. Nonferrous Met. Soc. China, 2007, 17, p 755–761. https://doi.org/10.1016/S1003-6326(07)60169-1

    Article  CAS  Google Scholar 

  23. Y. Tian, H. Huang, H. Wang, Y. Xie, X. Sheng, L. Zhong, and X. Zhang, Accelerated Formation of Zinc Phosphate Coatings with Enhanced Corrosion Resistance on Carbon Steel by Introducing α-Zirconium Phosphate, J. Alloys Compd., 2020, 831, p 15490. https://doi.org/10.1016/j.jallcom.2020.154906

    Article  CAS  Google Scholar 

  24. T. Li, Z.J. Leng, S. Wang, X. Wang, R. Ghomashchi, Y. Yang, and J. Zhou, Comparison of the Effects of Pre-activators on Morphology and Corrosion Resistance of Phosphate Conversion Coating on Magnesium Alloy, J. Magnes. Alloy, 2021 https://doi.org/10.1016/j.jma.2021.03.012

    Article  Google Scholar 

  25. S. Hu, M. Muhammad, M. Wang, R. Ma, A. Du, Y. Fan, X. Cao, and X. Zhao, Corrosion Resistance Performance of Nano-MoS2-Containing Zinc Phosphate Coating on Q235 Steel, Mater. Lett., 2020, 265, p 127256. https://doi.org/10.1016/j.matlet.2019.127256

    Article  CAS  Google Scholar 

  26. W. Wang, Y. Tian, A. Ke, H. Huang, H. Shen, and X. Zhang, Enalapril Maleate as a Green Accelerator for Zinc Phosphating Coating on Low-Carbon Steel, J. Ind. Eng. Chem., 2023, 120, p 477–486. https://doi.org/10.1016/j.jiec.2022.12.056

    Article  CAS  Google Scholar 

  27. Y. Tian, H. Huang, H. Wang, Y. Xie, X. Sheng, L. Zhong, and X. Zhang, Accelerated Formation of Zinc Phosphate Coatings with Enhanced Corrosion Resistance on Carbon Steel by Introducing A-Zirconium Phosphate, J. Alloys Compd., 2020, 831, p 15490. https://doi.org/10.1016/j.jallcom.2020.154906

    Article  CAS  Google Scholar 

  28. M. Wang, R. Ma, A. Du, S. Hu, M. Muhammad, X. Cao, Y. Fan, X. Zhao, and J. Wu, Corrosion Resistance of Black Phosphorus Nanosheets Composite Phosphate Coatings on Q235 Steel, Mater. Chem. Phys., 2020, 250, p 123056. https://doi.org/10.1016/j.matchemphys.2020.123056

    Article  CAS  Google Scholar 

  29. X. He, J. Wu, Y. Chen, L. Zhang, and X. Sheng, A Trace Amount of MXene@PDA Nanosheets for Low-Temperature Zinc Phosphating Coatings with Superb Corrosion Resistance, Appl. Surf. Sci., 2022, 603, p 154455. https://doi.org/10.1016/j.apsusc.2022.154455

    Article  CAS  Google Scholar 

  30. A. Anawati, E. Hidayati, and H. Labibah, Characteristics of Magnesium Phosphate Coatings Formed on AZ31 Mg Alloy by Plasma Electrolytic Oxidation with Improved Current Efficiency, Mater. Sci. Eng. B, 2021, 272, p 115354. https://doi.org/10.1016/j.mseb.2021.115354

    Article  CAS  Google Scholar 

  31. Q. Wu, B. Yu, P. Zhou, T. Zhang, and F. Wang, Fabrication of Phosphate Conversion Coatings on Rolled AZ31 Magnesium Alloy: Variation of Corrosion Resistance on Different Planes Induced by the Crystallographic Texture, Mater. Chem. Phys., 2021, 273, p 125121. https://doi.org/10.1016/j.matchemphys.2021.125121

    Article  CAS  Google Scholar 

  32. E.P. Banczeka, P.R.P. Rodriguesb, and I. Costa, Evaluation of Porosity and Discontinuities in Zinc Phosphate Coating by Means of Voltametric Anodic Dissolution (VAD), Surf. Coat. Technol., 2009, 203, p 1213. https://doi.org/10.1016/j.surfcoat.2008.10.026

    Article  CAS  Google Scholar 

  33. M. Fouladi and A. Amadeh, Comparative Study Between Novel Magnesium Phosphate and Traditional Zinc Phosphate Coatings, Mater. Lett., 2004, 58, p 3316. https://doi.org/10.1016/j.matlet.2013.01.061

    Article  CAS  Google Scholar 

  34. M. Fouladi and A. Amadeh, Effect of Phosphating Time and Temperature on Microstructure and Corrosion Behavior of Magnesium Phosphate Coating, Electrochim. Acta, 2013, 106, p 1–12. https://doi.org/10.1016/j.electacta.2013.05.041

    Article  CAS  Google Scholar 

  35. M.R. Dayyari, A. Amadeh, and S. Sadreddini, The Influence of Direct Current Density on Microstructure and Corrosion Resistance of Magnesium Phosphate Coating via Cathodic Electrochemical Treatment, Mater. Chem. Phys., 2017, 199, p 537–542. https://doi.org/10.1016/j.matchemphys.2017.07.040

    Article  CAS  Google Scholar 

  36. M.R. Dayyari, A. Amadeh, and S. Sadreddini, Application of Magnesium Phosphate Coating on Low Carbon Steel via Electrochemical Cathodic Method and Investigation of Its Corrosion Resistance, J. Alloys Compd., 2015, 647, p 956–958. https://doi.org/10.1016/j.jallcom.2015.06.063

    Article  CAS  Google Scholar 

  37. H. Liu, H. Yang, Z. Tong, D. Yang, Y. Ge, and X. Ren, Effects of Laser Shock Peening Post-treatment on Microstructure and Corrosion Resistance of Phosphate Conversion Coatings, Opt. Laser Technol., 2023, 162, p 10928. https://doi.org/10.1016/j.optlastec.2023.109289

    Article  CAS  Google Scholar 

  38. A.A. Ayoola, B.M. Durodola, R. Babalola, O.D. Adeniyi, and C.E. Ilobinso, Corrosion Inhibitive Effects of Calcium-Modified Zinc Phosphate Coating on A36 Mild Steel, Results Eng., 2023, 17, p 10088. https://doi.org/10.1016/j.rineng.2023.100880

    Article  CAS  Google Scholar 

  39. D. Zhang, Y. Ding, and X. Song, Preparation of Zn-Ca Phosphate Coating in Presence of PTFE on 45 Steel and Its Corrosion Properties in Simulated Seawater, Int. J. Electrochem. Sci., 2022, 17, p 220974. https://doi.org/10.20964/2022.09.42

    Article  CAS  Google Scholar 

  40. M.F. Morks, Magnesium Phosphate Treatment for Steel, Mater. Lett., 2004, 58, p 3316. https://doi.org/10.1016/j.matlet.2004.06.027

    Article  CAS  Google Scholar 

  41. E. E. Stansbury, Fundamentals of Electrochemical Corrosion, ASM International, Ohio, 2000, pp. 233–363

  42. ASTM standard G 102-89, ASTM International, 2015, 03.02

  43. D. Halliday, R. Resnick, and J. Walker, "Fundamental of Physics", 9th Ed., John Wiley and Sons, 2010, pp. 645

  44. V.F.C. Lins and G.F.A. Reis, Electrochemical Impedance Spectroscopy and Linear Polarization Applied to Evaluation of Porosity of Phosphate Conversion Coatings on Electrogalvanized Steels, Surf. Coat. Technol., 2006, 253, p 2875–2884.

    CAS  Google Scholar 

  45. J. Creus, H. Mazille, and H. Idrissi, Porosity Evaluation of Protective Coatings Onto Steel, through Electrochemical Techniques, Surf. Coat. Technol., 2000, 130, p 224–232. https://doi.org/10.1016/j.apsusc.2006.06.030

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Fouladi or Ahmad Ali Amadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouladi, M., Amadeh, A.A. Effect of Magnesium Carbonate and Phosphoric Acid Concentration on Microstructure and Corrosion Behavior of Magnesium Phosphate Coating. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08604-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08604-y

Keywords

Navigation