Skip to main content
Log in

Effect of Rare Earth Oxide Addition on Regenerated Cemented Carbide

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

With the wide application of cemented carbide, W and Co, the main raw materials for preparing cemented carbide, are depleted increasingly. Therefore, it is more and more important to prepare regenerated cemented carbide by recycling WC scrap. However, in the preparation of regenerated cemented carbide, there will be problems such as the introduction of impurity elements, discontinuous growth of grains, and high porosity. To optimize the mechanical properties of the regenerated cemented carbide, the modification of regenerated cemented carbide by adding rare earth oxides has been studied. It is found that the addition of rare earth can effectively inhibit the growth of WC grains and the formation of pores, thus avoiding the abnormal growth of WC grains. With the increase in the rare earth oxide content, the relative density, hardness, and bending strength of regenerated cemented carbide show a trend of increasing first and then decreasing. Among them, the addition of 0.5% Y2O3 has the optimal effect on improving the mechanical properties of regenerated cemented carbides. The relative density, hardness, and strength have been increased by 1.24, 9.43, and 11.37%. When the content of rare earth is more than 0.7%, the comprehensive properties of regenerated cemented carbide begin to decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Shemi, A. Magumise, S. Ndlovu, and N. Sacks, Recycling of Tungsten Carbide Scrap Metal: A Review of Recycling Methods and Future Prospects, Miner. Eng., 2018, 122, p 195–205.

    Article  CAS  Google Scholar 

  2. R.R. Srivastava, J.-C. Lee, M. Bae, and V. Kumar, Reclamation of Tungsten from Carbide Scraps and Spent Materials, J. Mater. Sci., 2018, 54, p 83–107.

    Article  Google Scholar 

  3. X.H. Zhou, L.M. Wang, and Y.J. Peng, The Status and Development of China’s Cemented Carbide Recycling Industry, Cem. Carbide, 2016, 33(5), p 356–364.

    Google Scholar 

  4. B. Yang, G.J. Chen, A.H. Shi et al., Research Status of Short-Process Recycling Technology of Waste Cemented Carbide, Mater. Guide, 2015, 29(3), p 68–74.

    Google Scholar 

  5. Y. Wang, X.Y. Song, Y.M. Liu et al., Oxidation-Reduction Carbonization Method for Recycling High-Performance Cemented Carbide, Rare Met. Mater. Eng., 2014, 43(12), p 3172–3176.

    Google Scholar 

  6. B. Uhrenius, B.-W. Hélène, and U. Gustavsson, On the Formation of Impurity-Containing Phases in Cemented Carbides, Int. J. Refract. Met. H, 1991, 10(1), p 45–55.

    Article  CAS  Google Scholar 

  7. T. Kojima, T. Shimizu, R. Sasai et al., Recycling Process of WC-Co Cermets by Hydrothermal Treatment, J. Mater. Sci., 2005, 40, p 5167–5172.

    Article  CAS  Google Scholar 

  8. N. Lin, Y. Jiang, D.F. Zhang et al., Effect of Cu, Ni on the Property and Microstructure of Ultrafine WC-10Co Alloys by Sinter–Hipping, Int. J. Refract. Met. H, 2011, 29, p 509–515.

    Article  CAS  Google Scholar 

  9. I. Konyashin, S. Hlawatschek, B. Ries et al., On the Mechanism of WC Coarsening in WC-Co Hardmetals with Various Carbon Contents, Int. J. Refract. Met. H, 2009, 27, p 234–243.

    Article  CAS  Google Scholar 

  10. C.S. Freemantle, N. Sacks, M. Topic et al., Impurity Characterization of Zinc-Recycled WC-6wt.% Co Cemented Carbides, Int. J. Refract. Met. H, 2014, 44, p 94–102.

    Article  CAS  Google Scholar 

  11. T. Karhumaa and M. Kurkela, Review of the hard metal recycling market and the role of the zinc process as a recycling option. Proceedings of the 18th International Plansee Seminar, (2013), p. 1–11

  12. C.H. Wu and T.Q. Zhang, Formation Mechanisms of Microstructure Imperfections and their Effects on Strength in Submicron Cemented Carbide, Int. J. Refract. Met. H, 2013, 40, p 8–13.

    Article  Google Scholar 

  13. L. Sha, Study on Rare-Earth Doped Cemented Carbides in China, Int. J. Refract. Met. H, 2009, 27, p 528–534.

    Article  CAS  Google Scholar 

  14. X. Ji, Y. Jian-Gao, and G. Xing-Hua, Application of Rare Earth Elements in Cemented Carbide Inserts, Drawing Dies and Mining Tools, Mater. Sci. Eng. A, 1996, 209(1–2), p 287–293.

    Article  Google Scholar 

  15. X.Q. Ou, D.H. Xiao, T.T. Shen et al., Characterization and Preparation of Ultra-Fine Grained WC-Co Alloys with Minor La-Additions, Int. J. Refract. Met. H, 2012, 31, p 266–273.

    Article  CAS  Google Scholar 

  16. W. He, D. Tan, H. Kuang et al., Effect of Yttrium Barrier on the Preparation of Precursor Powders of WC-Co Cemented Carbide and Properties of Sintered Bulk, J. Alloys Compd., 2018, 742, p 702–711.

    Article  CAS  Google Scholar 

  17. T.T. Shen, D.H. Xiao, X.Q. Ou et al., Effects of LaB6 Addition on the Microstructure and Mechanical Properties of Ultrafine Grained WC-10Co Alloys, J. Alloys Compd., 2011, 509, p 1236–1243.

    Article  CAS  Google Scholar 

  18. D.H. Xiao, F.Q. Zhang, and W.H. Luo, Fabrication and Characterization of Ultrafine WC-8Co-xCeB6 Cemented Carbides, Ceram. Int., 2011, 37, p 2795–2801.

    Article  CAS  Google Scholar 

  19. S. Liu, Z.L. Huang, G. Liu et al., Preparing Nano-Crystalline Rare Earth Doped WC/Co Powder by High Energy Ball Milling, Int. J. Refract. Met. H, 2006, 24, p 461–464.

    Article  CAS  Google Scholar 

  20. C. Xu, C. Huang, and X. Ai, Toughening and Strengthening of Advanced Ceramics with Rare Earth Additives, Ceram. Int., 2006, 32, p 423–429.

    Article  CAS  Google Scholar 

  21. D.H. Xiao, Y.H. He, M. Song et al., Y2O3- and NbC-Doped Ultrafine WC-10Co Alloys by Low Pressure Sintering, Int. J. Refract. Met. H, 2010, 28, p 407–411.

    Article  CAS  Google Scholar 

  22. X. Sun, Y. Wang, and D.Y. Li, Mechanical Properties and Erosion Resistance of Ceria Nano-Particle-Doped Ultrafine WC-12Co Composite Prepared by Spark Plasma Sintering, Wear, 2013, 301, p 406–414.

    Article  CAS  Google Scholar 

  23. W. He, D.Q. Tan, L. Lu et al., Effects of Ce and Y on the Structure and Properties of YG6 Cemented Carbide, Chin. Rare Earths, 2015, 36(6), p 51–56.

    Google Scholar 

  24. L. Zhang, W.D. Schubert, S. Chen et al., Rare Earth Enrichment Phenomenon during Sintering Process of Grainy Hardmetal, Mater. Sci. Eng. A, 2004, 384, p 395–401.

    Article  Google Scholar 

  25. C.W. Morton, D.J. Wills, and K. Stjernberg, The Temperature Ranges for Maximum Effectiveness of Grain Growth Inhibitors in WC-Co Alloys, Int. J. Refract. Met. H, 2005, 23(24), p 287–293.

    Article  CAS  Google Scholar 

  26. X. Wang, Z.Z. Fang, and H.Y. Sohn, Grain Growth during the Early Stage of Sintering of Nanosized WC-Co Powder, Int. J. Refract. Met. H, 2008, 26, p 232–241.

    Article  CAS  Google Scholar 

  27. K. Choi, J.W. Choi, D.Y. Kim et al., Effect of Coalescence on the Grain Coarsening during Liquid-Phase Sintering of TaC-TiC-Ni Cermets, Acta Mater., 2000, 48(12), p 3125–3129.

    Article  CAS  Google Scholar 

  28. W. Su, Y. Sun, J. Liu et al., Effects of Ni on the Microstructures and Properties of WC-6Co Cemented Carbides Fabricated by WC-6(Co, Ni) Composite Powders, Ceram. Int., 2015, 41, p 3169–3177.

    Article  CAS  Google Scholar 

  29. W.D. Schubert, A. Bock, and B. Lux, General Aspects and Limits of Conventional Ultrafine WC Powder Manufacture and Hard Metal Production, Int. J. Refract. Met. H, 1995, 13(5), p 281–296.

    Article  CAS  Google Scholar 

  30. G. Gille, B. Szesny, K. Dreyer et al., Submicron and Ultrafine Grained Hardmetals for Microdrills and Metal Cutting Inserts, Int. J. Refract. Met. H, 2002, 20(1), p 3–22.

    Article  CAS  Google Scholar 

  31. C. Xu, X. Ai, and C. Huang, Research and Development of Rare-Earth Cemented Carbides, Int. J Refract. Met. H, 2001, 19(3), p 159–168.

    Article  CAS  Google Scholar 

  32. X. Sun, Y. Wang, F. Peng et al., Optimization of Processing Parameters for WC-11Co Cemented Carbide Doped with Nano-Crystalline CeO2, J. Mater. Eng. Perform., 2012, 22, p 112–117.

    Article  Google Scholar 

  33. G.S. Upadhyaya, Materials Science of Cemented Carbides—An Overview, Mater. Des., 2001, 22(6), p 483–489.

    Article  CAS  Google Scholar 

  34. S. Song, Y. Xu, X. Chen et al., Effect of Rare Earth Cerium and Impurity tin on the Hot Ductility of a Cr-Mo Low Alloy Steel, J. Rare Earths, 2016, 34, p 1062–1068.

    Article  CAS  Google Scholar 

  35. Y. Kim, M.H. Hong, S.H. Lee et al., The Effect of Yttrium Oxide on the Sintering Behavior and Hardness of Tungsten, Met. Mater. Int., 2006, 12(3), p 245–248.

    Article  Google Scholar 

  36. L. Gu, J. Huang, and C. Xie, Effects of Carbon Content on Microstructure and Properties of WC-20Co Cemented Carbides, Int. J. Refract. Met. H, 2014, 42, p 228–232.

    Article  CAS  Google Scholar 

  37. Y. Liu, X. Li, J. Zhou, K. Fu, W. Wei, M. Du, and X. Zhao, Effects of Y2O3 Addition on Microstructures and Mechanical Properties of WC-Co Functionally Graded Cemented Carbides, Int. J. Refract. Met. H, 2015, 50, p 53–58.

    Article  Google Scholar 

  38. Y.G. Tkachenko, D.Z. Yurchenko, A.S. Sibel et al., High-Temperature Friction and Wear of Titanium Carbide Hard Alloys with an Addition of a Solid Lubricant, Powder Metall. Met. Ceram., 1998, 37, p 421–424.

    Article  CAS  Google Scholar 

  39. H. Saito, A. Iwabuchi, and T. Shimizu, Effects of Co Content and WC Grain Size on Wear of WC Cemented Carbide, Wear, 2006, 261(2), p 126–132.

    Article  CAS  Google Scholar 

  40. H. Zhang, J.X. Deng, and G.Y. Li, Effect of Grain Size on Friction and Wear Properties of WC Cemented Carbide Tool Materials, Tool Technol., 2010, 6, p 9–12.

    Google Scholar 

  41. K. Jia and T.E. Fischer, Sliding Wear of Conventional and Nanostructured Cemented Carbides, Wear, 1997, 203, p 310–318.

    Article  Google Scholar 

  42. J. Pirso, S. Letunovitš, and M. Viljus, Friction and Wear Behaviour of Cemented Carbides, Wear, 2004, 257, p 257–265.

    Article  CAS  Google Scholar 

  43. T. Kagnaya, C. Boher, L. Lambert et al., Wear Mechanisms of WC-Co Cutting Tools from High-Speed Tribological Tests, Wear, 2009, 267, p 890–897.

    Article  CAS  Google Scholar 

  44. D.G.F. O’quigley, S. Luyckx, and M.N. James, An Empirical Ranking of a Wide Range of WC-Co Grades in Terms of their Abrasion Resistance Measured by the ASTM Standard B 611-85 Test, Int. J. Refract. Met. H, 1997, 15, p 73–79.

    Article  Google Scholar 

  45. I. Konyashin, B. Ries, D. Hlawatschek et al., Wear-Resistance and Hardness: Are They Directly Related for Nanostructured Hard Materials, Int. J. Refract. Met. H, 2015, 49, p 203–211.

    Article  CAS  Google Scholar 

  46. J. Larsen-Basse, Binder Extrusion in Sliding Wear of WC-Co Alloys, Wear, 1985, 105, p 247–256.

    Article  CAS  Google Scholar 

  47. K. Bonny, P. De Baets, Y. Perez et al., Friction and Wear Characteristics of WC-Co Cemented Carbides in Dry Reciprocating Sliding Contact, Wear, 2010, 268, p 11–12.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (52275438, 51675289) and the Natural Science Foundation of Shandong Province (ZR2020ME160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Wang, Y., Huai, J. et al. Effect of Rare Earth Oxide Addition on Regenerated Cemented Carbide. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08320-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08320-7

Keywords

Navigation