Skip to main content
Log in

Effect of Sr and Gd on Microstructure and Properties of Zn-2Cu-0.8 Mg Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A new biodegradable Zn-2Cu-0.8 Mg-(Sr, Gd) zinc alloy was designed by using Zn-2Cu-0.8 Mg as the base alloy and adding microalloying elements Sr and Gd. After adding Sr and Gd, the corrosion resistance of Zn-2Cu-0.8 Mg zinc alloy was improved. The comprehensive mechanical properties of composite adding Sr and Gd are better than that of adding Sr alone, but lower than that of adding Gd alone. The corrosion rate of Zn-2Cu-0.8 Mg alloy decreased with Sr and Gd addition. The corrosion rate of Zn-2Cu-0.8 Mg is 0.304 mm/year, while that of Zn-2Cu-0.8 Mg-0.2Gd zinc alloy is the lowest, 0.185 mm/year in electrochemical test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8

Similar content being viewed by others

References

  1. X. Dandan, Y. Fan, Z. Yufeng, L. Yunsong, and Z. Yongsheng, Research Status of Biodegradable Metals Designed for Oral and Maxillofacial Applications: A Review, Bioact. Mater., 2021, 6, p 4186–4208.

    Article  Google Scholar 

  2. D. Vojtčch, J. Kubásek, J. Šerák, and P. Novák, Mechanical and Corrosion Properties of Newly Developed Biodegradable Zn-Based Alloys for Bone Fixation, Acta Biomater., 2011, 7, p 3515–3522.

    Article  Google Scholar 

  3. H.F. Li, X.H. Xie, Y.F. Zheng, Y. Cong, F.Y. Zhou, K.J. Qiu, X. Wang, S.H. Chen, L. Huang, and L. Tian, Development of Biodegradable Zn-1X Binary Alloys with Nutrient Alloying Elements Mg, Ca and Sr, Sci. Rep., 2015, 5, p 10719–10813.

    Article  CAS  Google Scholar 

  4. N.S. Murni, M.S. Dambatta, S.K. Yeap, G.R.A. Froemming, and H. Hermawan, Cytotoxicity Evaluation of Biodegradable Zn-3Mg Alloy Toward Normal Human Osteoblast Cells, Mater. Sci. Eng. C, 2015, 49, p 560–566.

    Article  CAS  Google Scholar 

  5. L. Huafang, Y. Hongtao, Z. Yufeng, Z. Feiyu, Q. Kejin, and W. Xiang, Design and Characterizations of Novel Biodegradable tErnary Zn-Based Alloys with IIA Nutrient Alloying Elements Mg, Ca and Sr, Mater. Des., 2015, 83, p 95–102.

    Article  Google Scholar 

  6. J. Kubásek and D. Vojtĕch, Structural and Corrosion Characteristics of Biodegradable Mg-RE(RE=Gd, Y, Nd) Alloys, Trans Nonferrous Met. Soc. China, 2013, 23, p 1215–1225.

    Article  Google Scholar 

  7. M.S. Dambatta, S. Izman, D. Kurniawan, Saeed Farahany, H. Bashir Yahaya, and Hermawan, Influence of Thermal Treatment on Microstructure, Mechanical and Degradation Properties of Zn-3Mg Alloy as Potential Biodegradable Implant Material, Mate. Des., 2015, 85, p 431–437.

    CAS  Google Scholar 

  8. X.W. Liu, J.K. Sun, K.J. Qiu, Y.H. Yang, Z.G. Pu, L. Li, and Y.F. Zheng, Effects of Alloying Elements (Ca and Sr)on Microstructure, Mechanical Property and in vitro Corrosion Behavior of Biodegradable Zn-1.5Mg Alloy, J. Alloys Compd., 2016, 664, p 444–452.

    Article  CAS  Google Scholar 

  9. Z.W. Yang, H. Liu, K.X. Ren, L.F. Ye, X.R. Zhuo, J. Ju, F. Xue, J. Bai, J.H. Jiang, and Y.C. Xin, A High Strength and Ductility Zn-Cu-Mg alloy Achieved by Bandlike Distribution of Ultra-Fine CuZn5 and Mg2Zn11 Particles, Mater. Sci. Eng. A, 2022, 850, p 143584.

    Article  CAS  Google Scholar 

  10. H. Liu, L.F. Ye, K.X. Ren, C. Sun, X.R. Zhuo, K. Yan, J. Ju, J.H. Jiang, F. Xue, and J. Bai, Evolutions of CuZn5 and Mg2Zn11 Phases During ECAP and their Impact on Mechanical Properties of Zn-Cu-Mg Alloys, J. Mater. Res. Technol., 2022, 21, p 5032–5044.

    Article  CAS  Google Scholar 

  11. B.K. Prasad, Wear Response of a Zinc-Based Alloy Containing Silicon as Influenced by Material Microstructure and Test Conditions, Mater. Sci. Eng. A, 2004, 367, p 63–73.

    Article  Google Scholar 

  12. D.C.M. Eleani, C.V. Cesar Edilda, R.S. Felipe Dalla, Maurício Cristiane, D.S.A. Carlos, and A.D. Berenice, Study of the Influence of Copper and Magnesium Additions on the Microstructure Formation of Zn-Al Hypoeutectic Alloys, J. Alloys. Compd., 2009, 488, p 89–99.

    Article  Google Scholar 

  13. M. Sharififar and S.A.A.A. Mousavi, Tensile Deformation and Fracture Behavior of CuZn5 Brass Alloy at High Temperature, Mater. Sci. Eng. A, 2014, 594, p 118–124.

    Article  CAS  Google Scholar 

  14. Z.B. Tang, J.L. Niu, H. Huang, H. Zhang, J. Pei, J.G. Ou, and G.Y. Yuan, Potential Biodegradable Zn-Cu Binary Alloys Developed for Cardiovascular Implant Applications, J. Mech. Beha. Biomed. Mater., 2017, 72, p 182–191.

    Article  CAS  Google Scholar 

  15. Z.B. Tang, H. Huang, J.L. Niu, L. Zhang, H. Zhang, J. Pei, J.Y. Tan, and G.Y. Yuan, Design and Characterizations of Novel Biodegradable Zn-Cu-Mg Alloys for Potential Biodegradable Implants, Mater. Des., 2017, 117, p 84–94.

    Article  CAS  Google Scholar 

  16. C.Z. Yao, Z.C. Wang, S.L. Tay, T.P. Zhu, and W. Gao, Effects of Mg on Microstructure and Corrosion Properties of Zn–Mg Alloy, J. Alloys. Compd., 2014, 602, p 101–107.

    Article  CAS  Google Scholar 

  17. L.L. Zhu, S. Zaidi, Y. Peng, H. Zhou, B.S. Moonga, A. Blesius, I. Dupin-Roger, M. Zaidi, and L. Sun, Induction of a Program Gene Expression during Osteoblast Differentiation with Strontium Ranelate, Biochem. Biophys. Res. Commun., 2007, 355, p 307–311.

    Article  CAS  Google Scholar 

  18. B. Jia, H.T. Yang, Z.C. Zhang, X.H. Qu, X.F. Jia, Q. Wu, Y. Han, Y.F. Zheng, and K. Dai, Biodegradable Zn-Sr Alloy for Bone Regeneration in rat Femoral Condyle Defect Model: In vitro and in vivo Studies, Bioa. Mater., 2021, 6, p 1588–1604.

    CAS  Google Scholar 

  19. H.X. Wang, Y. Zhang, C.H. Wu, Q.Y. Lu, L.L. Liu, and Y.J. Xue, Effect of Gd Content on Microstructure and Properties of Zn-1.2Cu-1.2Mg Zinc Alloy, Rare Metal Mater. Eng., 2021, 12, p 4282–4285.

    Google Scholar 

  20. S.H. Cai, T. Lei, N.F. Li, and F.F. Feng, Effects of Zn on Microstructure, Mechanical Properties and Corrosion Behavior of Mg–Zn Alloys, Mater. Sci. Eng. C Mater. Biol. Appl., 2012, 32, p 2570–2577.

    Article  CAS  Google Scholar 

  21. D. Vojtech, J. Kubasek, J. Serak, and P. Novak, Mechanical and Corrosion Properties of Newly Developed Biodegradable Zn-Based Alloys for Bone Fixation, Acta Biomater., 2011, 7, p 3515–3522.

    Article  CAS  Google Scholar 

  22. J. Kubásek, D. Vojtěch, E. Jablonská, I. Pospíšilová, J. Lipov, and T. Ruml, Structure, Mechanical Characteristics and in vitro Degradation, Cytotoxicity, Genotoxicity and Mutagenicity of Novel Biodegradable Zn-Mg Alloys, Mater. Sci. Eng. C, 2016, 58, p 24–35.

    Article  Google Scholar 

  23. J. Venezuela and M.S. Dargusch, The Influence of Alloying and Fabrication Techniques on the Mechanical Properties, Biodegradability and Biocompatibility of Zinc: A Comprehensive Review, Acta Biomater., 2019, 87, p 11–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, Y., Mao, X. et al. Effect of Sr and Gd on Microstructure and Properties of Zn-2Cu-0.8 Mg Alloy. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08293-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08293-7

Keywords

Navigation