Skip to main content
Log in

An Investigation to Achieve Good Surface Integrity in Wire Electrical Discharge Machining of Ti-6242 Super Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the effect of cutting parameters such as pulse-on time (Ton), servo-voltage (U), feed rate (S) and flushing pressure (P) on surface roughness (Ra) when machining Ti-6242 super alloy by WEDM process. The cutting was performed using a brass tool electrode and deionized water as a dielectric fluid. To optimize cutting parameters for surface roughness improvement, Taguchi’s signal‐to‐noise ratio (S/N) approach was applied using L9 (3^4) orthogonal array and Lower-The-Better (LTB) criteria. Substantially, the findings from current investigation suggest the application of the values 0.9 µs, 100 V, 29 mm/min, and 60 bar for the cutting parameters Ton, U, S and p, respectively, for producing a good surface finish quality. Electron microscope scanning (SEM) observations have been performed on machined surface for a wide range of cutting parameters to characterize wire EDMed surface of Ti-6242. SEM micrographs indicated that white layer and machining-induced damage characteristics are highly dependent on cutting parameters. For high servo-voltage, decreasing the pulse-on time Ton and feed rate S leads to a strong decrease in the overall machining-induced surface damage. Furthermore, for high levels of servo-voltage and feed rate, it was observed that pulse-on time could play a role in controlling the density of surface microcracks. In fact, the use of low cutting pulse-on time combined with high servo-voltage and feed rate was found to inhibit surface microcracks formation, giving the material surface better resistance to cracking than with high pulse on-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Metals Handbook TENTH EDITION Volume 2 Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (1990). ASM International the Materials Information Society. ISBN: 978-0-87170-378-1.

  2. R.R. Boyer, An Overview on the Use of Titanium in the Aerospace Industry, Mater. Sci. Eng. A, 1996, 213, p 103–114. https://doi.org/10.1016/0921-5093(96)10233-1

    Article  Google Scholar 

  3. A. Kramer, D. Lung, and F. Klocke, High Performance Cutting of Aerospace Materials, Adv. Mater. Res., 2012, 498, p 127–132. https://doi.org/10.4028/www.scientific.net/AMR.498.127

    Article  Google Scholar 

  4. D.K. Aspinwall, S.L. Soo, A.E. Berrisford, and G. Walder, Workpiece Surface Roughness and Integrity After WEDM of Ti6Al-4V and Inconel 718 Using Minimum Damage Generator Technology, Ann. CIRP, 2008, 57, p 187–190. https://doi.org/10.1016/j.cirp.2008.03.054

    Article  Google Scholar 

  5. D.T. Curtis, S.L. Soo, Aspinwall, D.K. Huber C, J. Fuhlendorf, and A. Grimm, Production of complex blade mounting slots in turbine disks using novel machining techniques. in Proceedings of the 3rd International Conference on High Performance Cutting - CIRP HPC. (Dublin, Ireland, 2008) pp 219–228

  6. F. Boud, C. Carpenter, J. Folkes, and P.H. Shipway, Abrasive Waterjet Cutting of a Titanium Alloy: The Influence of Abrasive Morphology and Mechanical Properties on Workpiece Grit Embedment and Cut Quality, J. Mater. Process. Technol., 2010, 210, p 2197–2205. https://doi.org/10.1016/j.jmatprotec.2010.08.006

    Article  CAS  Google Scholar 

  7. D.T. Curtis, S.L. Soo, D.K. Aspinwall, and C. Sage, Electrochemical Superabrasive Machining of a Nickel-Based Aeroengine Alloy Using Mounted Grinding Points, Ann. CIRP, 2009, 58, p 173–176. https://doi.org/10.1016/j.cirp.2009.03.074

    Article  Google Scholar 

  8. G. Kappmeyer, C. Hubig, M. Hardly, M. Witty, and M. Brusch, Modern Machining of Advanced Aerospace Alloys - Enabler for Quality and Performance, Procedia CIRP, 2012, 1, p 28–43. https://doi.org/10.1016/j.procir.2012.04.005

    Article  Google Scholar 

  9. T. Meurig, T. Sam, and J. Martin, Microstructural Damage During High-Speed Milling of Titanium Alloys, Scripta Mater., 2010, 62, p 250–253. https://doi.org/10.1016/j.scriptamat.2009.11.009

    Article  CAS  Google Scholar 

  10. S. Ezeddini, G. Zambelis, E. Bayraktar, I. Miskioglu, and D. Katundi, Experimental Study of Laser Cutting Process of Titanium Aluminium (Ti-Al) Based Composites Designed Through Combined Method of Powder Metallurgy and Thixoforming, Mech. Compos. Multi-funct. Mater., 2018, 6, p 21–27.

    Google Scholar 

  11. D. Evarasiddappa, M. Chandrasekaran, and R. Arunachalam, Experimental Investigation and Parametric Optimization for Minimizing Surface Roughness During WEDM of Ti6Al4V Alloy Using Modified TLBO Algorithm, J Braz. Soc. Mech. Sci. Eng., 2020, 42, p 128. https://doi.org/10.1007/s40430-020-2224-7

    Article  CAS  Google Scholar 

  12. H. Sidhom, G. Farhat, A. Tidiane, G. Gonzalo, and B. Chedly, Effect of Electro Discharge Machining (EDM) on the AISI316L SS White Layer Microstructure and Corrosion Resistance, Int. J. Adv. Manuf. Technol., 2013, 65, p 141–153. https://doi.org/10.1007/s00170-012-4156-6

    Article  Google Scholar 

  13. W. Rajhi, I. Alatawi, T. Subhani, B. Ayadi, A. Al-Ghamdi, and A. Khaliq, A Contribution to Numerical Prediction of Surface Damage and Residual Stresses on die-Sinking EDM of Ti6Al4V, J. Manuf. Process., 2021, 68, p 1458–1484. https://doi.org/10.1016/j.jmapro.2021.06.056

    Article  Google Scholar 

  14. O.A. Zeid, On the Effect of Electro Discharge Machining Parameters on the Fatigue Life on AISID6 Tool Steel, J. Mater. Process. Technol., 1997, 68, p 27–32. https://doi.org/10.1016/S0924-0136(96)02523-X

    Article  Google Scholar 

  15. L. Li, X.T. Wei, Y.B. Guo, W. Li, and J.F. Liu, Surface Integrity of Inconel 718 by Wire-EDM at Different Energy Modes, J. Mater. Eng. Perform., 2014, 23, p 3051–3057. https://doi.org/10.1007/s11665-014-1048-y

    Article  CAS  Google Scholar 

  16. A. Hasçalık and U. Çaydaş, Electrical Discharge Machining of Titanium Alloy (Ti-6Al-4V), Appl. Surf. Sci., 2007, 253, p 9007–9016. https://doi.org/10.1016/j.apsusc.2007.05.031

    Article  CAS  Google Scholar 

  17. F. Nourbakhsh, K.P. Rajurkar, A.P. Malshe, and J. Cao, Wire Electro-Discharge Machining of Titanium Alloy, Procedia CIRP, 2013, 5, p 13–18. https://doi.org/10.1016/j.procir.2013.01.003

    Article  Google Scholar 

  18. A. Perumal, A. Azhagurajan, S. Baskaran, R. Prithivirajan, and P. Narayansamy, Statistical Evaluation and Performance Analysis of Electrical Discharge Machining (EDM) Characteristics of Hard Ti-6Al-2Sn-4Zr-2Mo Alloy, Mater. Res. Exp., 2019 https://doi.org/10.1088/2053-1591/ab06da

    Article  Google Scholar 

  19. S. Ben Salem, W. Tebni, and E. Bayraktar, Prediction of Surface Roughness by Experimental Design Methodology in Electrical Discharge Machining (EDM), J. Achieve. Mater. Manuf. Eng., 2011, 49, p 150–157.

    Google Scholar 

  20. M. Boujelbene, E. Bayraktar, W. Tebni, and S. Ben Salem, Influence of Machining Parameters on the Surface Integrity in Electrical Discharge Machining, Arch. Mater. Sci. Eng., 2009, 37(2), p 110–116.

    Google Scholar 

  21. S.S. Mahapatra and A. Patnaik, Optimization of Wire Electrical Discharge Machining (WEDM) Process Parameters Using Taguchi Method, Int. J. Adv. Manuf. Technol., 2007, 34, p 911–925. https://doi.org/10.1007/s00170-006-0672-6

    Article  Google Scholar 

  22. Y.I. Yun, I.Y. Park, and S.J. Song, Performance Degradation due to Blade Surface Roughness in a Single-Stage Axial Turbine, ASME. J. Turbomach., 2005, 127, p 137–143. https://doi.org/10.1115/1.1811097

    Article  Google Scholar 

  23. A. Perumal, A. Azhagurajan, R. Prithivirajan, and S. Suresh Kumar, Experimental Investigation and Optimization of Process Parameters in Ti—(6242) Alpha-Beta Alloy Using Electrical Discharge Machining, J. Inorg. Organomet. Polym. Mater., 2021, 31, p 1787–1800. https://doi.org/10.1007/s10904-020-01786-1

    Article  CAS  Google Scholar 

  24. S.K. Shather, A. Bin Sapit, and F. Nehad, Performance of Ti-6242 Production Using Nano Powder Mixed with Different Dielectrics, Mater. Today Proc., 2021, 45, p 4490–4497. https://doi.org/10.1016/j.matpr.2020.12.997

    Article  CAS  Google Scholar 

  25. R. Prasanna, V. Kavimani, P.M. Gopal, and D. Simson, Multi-Response Optimization and Surface Integrity Characteristics of Wire Electric Discharge Machining α-Phase Ti-6242 Alloy, Process. Integrat. Opt. Sustain., 2021 https://doi.org/10.1007/s41660-021-00179-2

    Article  Google Scholar 

  26. A. Perumal, A. Azhagurajan, S.S. Kumar et al., Influence of Optimization Techniques on Wire Electrical Discharge Machining of Ti-6Al-2Sn-4Zr-2Mo Alloy using Modeling Approach, J. Inorg. Organomet. Polym., 2021, 31, p 3272–3289. https://doi.org/10.1007/s10904-021-01953-y

    Article  CAS  Google Scholar 

  27. K. Mandeep and S. Hari, Multi Response Optimization in Wire Electrical Discharge Machining of Inconel X-750 Using Taguchi’s Technique and Grey Relational Analysis, Cogent Eng., 2016, 3, p 1. https://doi.org/10.1080/23311916.2016.1266123

    Article  Google Scholar 

  28. R.V. Rao and R. Venkata Rao, Modeling and optimization of machining processes, Adv. Modell. Opt. Manuf. Process. Int. Res. Develop., 2011 https://doi.org/10.1007/978-0-85729-015-1_2

    Article  Google Scholar 

  29. R. Chalisgaonkar and J. Kumar, Multi-Response Optimization and Modeling of Trim Cut WEDM Operation of Commercially Pure Titanium (CPTi) Considering Multiple User’s Performance, Eng. Sci. Technol. Int. J., 2015, 18, p 125–134. https://doi.org/10.1016/j.jestch.2014.10.006

    Article  Google Scholar 

  30. F.J. Ridgeon, M.J. Raine, D.P. Halliday, M. Lakrimi, A. Thomas, and D.P. Hampshire, Superconducting Properties of Titanium Alloys (Ti-64 and Ti-6242) for Critical Current Barrels, IEEE Trans. Appl. Supercond., 2017, 27, p 1–5. https://doi.org/10.1109/TASC.2016.2645378

    Article  Google Scholar 

  31. A. Boulila, M. Boujelbene, C. Fekiri, and A. Hammami, Optimization of Manufacturing Complex-Shaped Gas Turbine Blades, Measurement, 2019, 135, p 768–781. https://doi.org/10.1016/j.measurement.2018.12.040

    Article  Google Scholar 

  32. G.S. Peace, Taguchi Methods: A Hands-on Approach, Addison-Wesley, Reading, MA, (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wajdi Rajhi.

Ethics declarations

Conflict of interest

The authors of present manuscript declare that they have no conflict of interest.

Ethical Approval

The manuscript does not contain clinical studies or patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezeddini, S., Rajhi, W., Boujelbene, M. et al. An Investigation to Achieve Good Surface Integrity in Wire Electrical Discharge Machining of Ti-6242 Super Alloy. J. of Materi Eng and Perform 33, 4523–4537 (2024). https://doi.org/10.1007/s11665-023-08270-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08270-0

Keywords

Navigation