Skip to main content
Log in

Effect of Pre-corrosion Damage on Dry Sliding Wear Behavior of Differently Heat-Treated Martensitic Stainless Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study explored the effect of pre-corrosion damage on the tribology behavior of the austenitized and the different tempered conditions of 13 wt.% Cr martensitic stainless steel under dry sliding conditions using a “ball on plate” configuration. Corrosion immersion experiments were performed in 5 wt.% HNO3 solution at room temperature for 30 min. The austenitized and the tempered at 300 °C (T300) specimens displayed the attack along the prior austenitic grain boundaries, whereas the specimens tempered at 550 (T550) and 700 °C (T700) showed intergranular plus interlath corrosion and uniform corrosion, respectively. Subjecting this corrosion-damaged specimens to dry sliding revealed non-monotonic friction and wear behavior with tempering temperature. The microstructure and the type of corrosion attack together determined the overall wear performance of the tempered conditions. The specific wear rate (k) decreased in the order kT700 > kT550 > kT300 ~ kaustenitized. The k value of the austenitized and the T300 specimens (~ 32 − 35 × 10−6 mm3/Nm) is observed to be 12 and 15 times lower than the k value of T550 (~ 408 × 10−6 mm3/Nm) and T700 (~ 495 × 10−6 mm3/Nm) specimens, respectively. The reason for the lower k value is due to the continuous, thick (~ 4 μm thickness) Cr-rich tribo-film that formed on the wear track and acted as solid lubricant. The T550 and T700 specimens had a discontinuous Fe-rich tribo-film on the wear tracks; therefore, rubbing in the presence of harder and loose Fe-rich oxides particles led to severe adhesion plus galling in T550 and smearing plus plastic deformation in T700 specimens. It was also found that the wear rate and surface damage are reduced for pre-corroded austenitized and T300 specimens compared to the respective unattacked pristine specimens; however, the opposite effect was observed in T550 and T700 specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.J. Zinkle and G.S. Was, Materials Challenges in nuCLEAR energy, Acta Mater., 2013, 61, p 735–758.

    Article  CAS  Google Scholar 

  2. T. Allen, J. Busby, M. Meyer, and D. Petti, Materials Challenges for Nuclear Systems, Mater. Today, 2010, 13(12), p 14–23.

    Article  CAS  Google Scholar 

  3. M. Narayana Rao, Materials Development for Indian Nuclear Power Programme: An Industry Perspective, Energy Procedia, 2011, 7, p 199–204.

    Article  Google Scholar 

  4. W.M. Garrison Jr., Stainless steels: martensitic, encyclopedia of Materials: Science and Technology, second, K.H.J. Buschow Ed., Elsevier, Oxford, UK, 2001, p 8804–8810

    Chapter  Google Scholar 

  5. S.K. Bonagani, V. Bathula, and V. Kain, Influence of Tempering Treatment on Microstructure and Pitting Corrosion of 13 wt.% Cr Martensitic Stainless Steel, Corros. Sci., 2018, 131, p 340–354.

    Article  CAS  Google Scholar 

  6. I. Taji, M.H. Moayed, and M. Mirjalili, Correlation Between Sensitization and Pitting Corrosion of AISI 403 Martensitic Stainless Steel, Corros. Sci., 2015, 92, p 301–308.

    Article  CAS  Google Scholar 

  7. B. Sunil Kumar, V. Kain and B. Vishwanadh, Effect of Tempering Treatments on Microstructure and Intergranular Corrosion of 13 wt.% Cr Martensitic Stainless Steel, Corrosion, 2016, 73(4), p 362–378.

    Article  Google Scholar 

  8. S.K. Bonagani, V. Kain, V. Bathula, R.H. Banerjee, and S. Tenneti, Electrochemical Behavior and Passive Property of 13Cr Martensitic Stainless Steel in Nitric Acid Solution, J. Mater. Eng. Perform., 2020, 29(1), p 215–229.

    Article  CAS  Google Scholar 

  9. N. Khare, S.K. Bonagani, P.K. Limaye, and V. Kain, Tribological Study on Tempered 13Cr Martensitic Stainless Steel Susceptible to Interlath/Intergranular Corrosion Under Nitric Acid Sliding Conditions, Mater. Chem. Phys., 2022, 285, p 126097.

    Article  CAS  Google Scholar 

  10. S. Jacobson and S. Hogmark, Tribofilms- on the crucial importance of tribologically induced surface modifications. In Book: Recent Developments in Wear Prevention, Friction and Lubrication, Research Signpost (2010), p. 197–225

  11. X. Cheng, Z. Jiang, B. Kosasih, H. Wu, S. Luo, and L. Jiang, Influence of Cr-Rich Oxide Scale on Sliding Wear Mechanism of Ferritic Stainless Steel at High Temperature, Tribol. Lett., 2016, 63(2), p 1–13.

    Article  CAS  Google Scholar 

  12. M.M. De Oliveira Junior, H.L. Costa, W.M. Silva Junior, and J.D.B. De Mello, Effect of Iron Oxide Debris on the Reciprocating Sliding Wear of Tool Steels, Wear, 2019, 426–427, p 1065–1075.

    Article  Google Scholar 

  13. Y.G. Cao, C.H. Yin, Y.L. Liang, and S.H. Tang, Lowering the Coefficient of Martensite Steel by Forming a Self-Lubricating Layer in Dry Sliding Wear, Mater. Res. Express, 2019, 6, p 055024.

    Article  CAS  Google Scholar 

  14. Y. Chen, Y. Tang, H. Zhang, and L. Fu, Effect of Chromium on Oxidation in Wear of Surface Nanocrystalline Martensite Steel, Tribol. Lett., 2016, 7, p 61.

    Google Scholar 

  15. P.J. Blau, Mechanisms for Transitional Friction and Wear Behavior of Sliding Metals, Wear, 1981, 72, p 55.

    Article  CAS  Google Scholar 

  16. K. Chu, F. Ren, W. Zhu, C. Zhao, P. Bellon, and R.S. Averback, Sliding Wear Induced Subsurface Microstructural Evolution in Nanocrystalline Nb-Ag Binary Alloys and Its Impact on Tribological Performance, Wear, 2017, 392–393, p 69–76.

    Article  Google Scholar 

  17. S. Jacobson and S. Hogmark, Surface Modifications in Tribological Contact, Wear, 2009, 266, p 370–378.

    Article  CAS  Google Scholar 

  18. S. Masuko, T. Iijima, A. Terawaki, S. Suzuki, T. Aoki, S. Nogi, and S. Obara, Effect of Surface Oxide Layer of Steel on the Tribological Characteristics of Load-bearing Additives for Multiply-Alkylated Cyclopentane Oil Under High Vacuum, Tribol. Lett., 2013, 51(1), p 115–125.

    Article  CAS  Google Scholar 

  19. K.L. Dahm, E. Torskaya, I. Goryacheva, and P.A. Dearnley, Tribological effects on subsurface interfaces, Proc. Inst. Mech. Eng. P. I. Mech. Eng. J-J Eng., 2007, 221, p 345.

    Article  Google Scholar 

  20. L.G. Korshunov and N.L. Chernenko, Effect of Friction-Induced Deformation on the Structure, Microhardness, and Wear Resistance of Austenitic Chromium—Nickel Stainless Steel Subjected to Subsequent Oxidation, Phys. Met. Metallogr., 2016, 117, p 307–313.

    Article  CAS  Google Scholar 

  21. S.Q. Wang, M.X. Wei, F. Wang, X.H. Cui, and C. Dong, Transition of Mild Wear to Severe Wear in Oxidative Wear of H21 Steel, Tribol. Lett., 2008, 32(2), p 67–72.

    Article  Google Scholar 

  22. M.X. Wei, S.Q. Wang, L. Wang, and X.H. Cui, Wear and Friction Characteristics of a Selected Stainless Steel, Tribol. Trans., 2011, 54(6), p 840–848.

    Article  CAS  Google Scholar 

  23. A. Dalmau, C. Richard, and A.I. Muñoz, Degradation Mechanisms in Martensitic Stainless Steels: Wear, Corrosion and Tribocorrosion Appraisal, Tribol. Int., 2018, 121, p 167–179.

    Article  CAS  Google Scholar 

  24. A. Gassner, H. Palkowski, C. Müller, J. Wilde, and H. Mozaffari-Jovein, Effect of Microstructural Evolution During Dry Sliding on the Corrosion Behaviour of Martensitic Stainless Steel, IJMR, 2022, 113(9), p 820–832.

    Article  CAS  Google Scholar 

  25. Z. Dai, S. Jiang, B. Wu, L. Ning, S. Li, and D. Duan, Synergism Between Wear and Corrosion of Cr26Mo1 Ferrite Stainless Steels in 0.5 mol/L of Sulfuric Acid, Tribol. Int. Part, 2023, A178, p 108007.

    Article  Google Scholar 

  26. R. Bateni, J.A. Szpunar, X. Wang, and D.Y. Li, Wear and Corrosion Wear of Medium Carbon Steel and 304 Stainless Steel, Wear, 2006, 260(1–2), p 116–122.

    Article  CAS  Google Scholar 

  27. A.N. Isfahany, H. Saghafian, and G. Borhani, The Effect of Heat Treatment on Mechanical Properties and Corrosion Behaviour of AISI420 Martensitic Stainless Steel, J. Alloy Compd., 2011, 509, p 3931–3936.

    Article  CAS  Google Scholar 

  28. K. Chandra, V. Kain, N. Srinivasan, I. Samajdar, and A.K. Balasubrahmanian, Temper Embrittlement and Corrosion Behaviour of Martensitic Stainless Steel 420, Century Stainl. Steels, 2013, 794, p 757–765.

    Google Scholar 

  29. N. Khare, S.K. Bonagani, P.K. Limaye, and V. Kain, Effect of Tempering on Tribological Properties of 13Cr Martensitic Stainless Steel and Alumina Material Pair in Dry Sliding, Tribol. Trans., 2021, 64, p 693–707.

    Article  CAS  Google Scholar 

  30. J.Y. Park and Y.S. Park, The Effects of Heat-Treatment Parameters on Corrosion Resistance and Phase Transformations of 14Cr–3Mo Martensitic Stainless Steel, Mater. Sci. Eng. A, 2007, 449–451, p 1131–1134.

    Article  Google Scholar 

  31. B. Qin, Z.Y. Wang, and Q.S. Sun, Effect of Tempering Temperature on Properties of 00 Cr 16 Ni 5Mo Stainless Steel, Mater. Charact., 2008, 59, p 1096–1100.

    Article  CAS  Google Scholar 

  32. S.K. Bonagani, V. Kain, N.N. Kumar, and H. Donthula, Effect of Austenitization-Cooling on Microstructure and Localized Corrosion Behavior of 13Cr Martensitic Stainless Steel, J. Mater. Eng. Perform., 2021, 30, p 2291–2299.

    Article  CAS  Google Scholar 

  33. A. Erdemir, M. Halter, and G.R. Fenske, Preparation of Ultralow-Friction Surface Films on Vanadium Diboride, Wear, 1997, 205(1), p 236–239.

    Article  CAS  Google Scholar 

  34. I.M. Hutchings, Tribology: Friction and Wear of Engineering Materials, CRC Press, London, 1992.

    Google Scholar 

  35. J. Williams, Engineering Tribology, Cambridge University Press, Cambridge, UK, 1994.

    Google Scholar 

  36. W.A. Glaeser, in ASM Handbook: Friction, Lubrication, and Wear Technology ed by P.J. Blau (ASM Int., 1992), p. 812–815

  37. G.W. Stachowiak and A.W. Batchelor Eds., Engineering Tribology, Fourth. Butterworth-Heinemann, Boston, 2014, p 293–370

    Google Scholar 

  38. R. Sahli, G. Pallares, C. Ducottet, B. Ali, S. Al Akhrass, M. Guibert, and J. Scheibert, Evolution of Real Contact Area Under Shear and the Value of Static Friction of Soft Materials, Proc. Natl. Acad. Sci., 2018, 115(3), p 471–476.

    Article  CAS  Google Scholar 

  39. A.C. Bozzi and J.D.B. de Mello, Wear Resistance and Wear Mechanisms of WC Thermal Sprayed Coatings in Three-Body Abrasion, Wear, 1999, 233–235, p 575–587.

    Article  Google Scholar 

  40. C.C. Viafara and A. Sinatora, Influence of Hardness of the Harder Body on Wear Regime Transition in a Sliding Pair of Steels, Wear, 2009, 267, p 425–432.

    Article  CAS  Google Scholar 

  41. T. Akagaki and D.A. Rigney, Sliding Friction and Wear of Metals in Vacuum, Wear, 1991, 149, p 353–374.

    Article  CAS  Google Scholar 

  42. T.E. Fischer, Z. Zhu, H. Kim, and D.S. Shin, Genesis and Role of Wear Debris in Sliding Wear of Ceramics, Wear, 2000, 245, p 53–60.

    Article  CAS  Google Scholar 

  43. M. Cocks, Wear Debris in the Contact Between Sliding Metals, J. Appl. Phys., 1958, 29, p 1609–1610.

    Article  Google Scholar 

  44. M. Ulutan, M. Mustafa Yildirim, S. Buytoz, and O.C. Elik, Microstructure and Wear Behavior of TIG Surface-Alloyed AISI 4140 Steel, Tribol. Trans., 2011, 54, p 67–79.

    Article  CAS  Google Scholar 

  45. Y. Wang and T. Lei, Wear Behavior of Steel 1080 with Different Microstructures During Dry Sliding, Wear, 1997, 36(2), p 213–217.

    Article  CAS  Google Scholar 

  46. J.F. Archard, Contact and Rubbing of Flat Surfaces, J. Appl. Phys., 1953, 24, p 981–988.

    Article  Google Scholar 

  47. R.A. García-León, J. Martínez-Trinidad, R. Zepeda-Bautista, I. Campos-Silva, A. Guevara-Morales, J. Martínez-Londoño, and J. Barbosa-Saldaña, Dry Sliding Wear Test on Borided AISI 316L Stainless Steel Under Ball-on-Flat Configuration: A Statistical Analysis, Tribol. Inter., 2021, 157, p 106885.

    Article  Google Scholar 

  48. T.F.J. Quinn, Review of Oxidational Wear: Part I: The Origins of Oxidational Wear, Tribol. Inter., 1983, 16(5), p 257–271.

    Article  CAS  Google Scholar 

  49. W. Dai, B. Kheireddin, H. Gao, and H. Liang, Roles of Nanoparticles in Oil Lubrication, Tribol. Int., 2016, 102, p 88–98.

    Article  CAS  Google Scholar 

  50. W. Xia, J. Zhao, H. Wu, S. Jiao, and Z. Jiang, Effects of Oil-in-Water Based Nano Lubricant Containing TiO2 Nanoparticles on the Tribological Behaviour of Oxidised High-Speedsteel, Tribol. Int., 2017, 110, p 77–85.

    Article  CAS  Google Scholar 

  51. S. Ningshen, U.K. Mudali, S. Ramya and B. Raj, Corrosion Behaviour of AISI type 304L Stainless Steel in Nitric Acid Media Containing Oxidizing Species, Corros. Sci., 2011, 53(1), p 64–70.

    Article  CAS  Google Scholar 

  52. K. Kato and G.E. Totten Eds., Polishing Wear, Friction, Lubrication, and Wear Technology, Vol 18 ASM International, Almere, 2017

    Google Scholar 

  53. R.A. García-León, J. Martínez-Trinidad, I. Campos-Silva, U. Figueroa-López and A. Guevara-Morales, Development of Tribological Maps on Borided AISI 316L Stainless Steel Under Ball-on-Flat Wet Sliding Conditions, Tribol. Int., 2021, 163, p 1–14.

    Article  Google Scholar 

  54. A. Socoliuc, E. Gnecco, R. Bennewitz and E. Meyer, Ripple Formation Induced Inlocalized Abrasion, Phys. Rev. B., 2003, 68, p 1154161–1154164.

    Article  Google Scholar 

  55. A.E. Filippov, V.L. Popov and M. Urbakh, Mechanism of wear and ripple formation induced by mechanical action of an atomic force microscope tip, Phys. Rev. Lett., 2011, 106, p 025502-1–025502-4.

    Article  Google Scholar 

  56. V. Podgursky, T. Hantschel, A. Bogatov, E. Kimmari, M. Antonov, M. Viljus, V. Mikli, M. Tsigkourakos, W. Vandervorst, J.G. Buijnsters, A.T. Raadik, and P. Kulu, Rippling on Wear Scar Surfaces of Nanocrystalline Diamond Films After Reciprocatingsliding Against Ceramic Balls, Tribol. Lett., 2014, 55(3), p 493–501.

    Article  CAS  Google Scholar 

  57. A. Ravikiran and B.N.P. Bai, Influence of Speed on the Tribochemical Reaction Products and the Associated Transitions for the Dry Sliding of Silicon Nitride Against Steel, J. Am. Ceram. Soc., 1995, 78(11), p 3025–3032.

    Article  CAS  Google Scholar 

  58. C. Trevisiol, A. Jourani and S. Bouvier, Effect of Microstructures with the Same Chemical Composition and Similar Hardness Levels on Tribological Behavior of Low Alloy Steel, Tribol. Int., 2018, 127, p 389–403.

    Article  CAS  Google Scholar 

  59. F.H. Stott and G.C. Wood, Influence of Oxides on Friction and Wear of Alloys, Tribol. Int., 1978, 11(4), p 211–218.

    Article  CAS  Google Scholar 

  60. T. Jõgiaas, A. Tarre, H. Mändar, J. Kozlova and A. Tamm, Nanoindentation of Chromium Oxide Possessing Superior Hardness among Atomic-Layer-Deposited Oxides, Nanomaterials, 2022, 12, p 82.

    Article  Google Scholar 

  61. M.M. Taheri, Q. Yang, Y. Li, and J.C. Gomez, The Effect of Deposition Parameters on the Structure and Mechanical Properties of Chromium Oxide Coatings Deposited by Reactive Magnetron Sputtering, Coatings, 2018, 8, p 111.

    Article  Google Scholar 

  62. T. Amano, M. Okazaki, Y. Takezawa, A. Shiino, M. Takeda, T. Onishi, K. Seto, A. Ohkubo, and T. Shishido, Hardness of Oxide Scales on Fe-Si Alloys at Room and High-Temperatures, Mater. Sci. Forum, 2006, 522–523, p 469–476.

    Article  Google Scholar 

  63. A. Wirth, D. Eggleston, and R. Whitaker, A fundamental tribochemical study of the third body layer formed during automotive friction braking, Wear, 1994, 179(1), p 75–81.

    Article  CAS  Google Scholar 

  64. K.H. Zum Gahr, Microstructure and Wear of Materials, Elsevier, New York, USA, 1987.

    Google Scholar 

  65. K. Kato and K. Adachi, Wear mechanisms, Modern Tribology. B. Bhushan Ed., CRC Press, London, 2000

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Madhumita Goswami and Mr. Anurup Das, Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai for their help in performing Raman spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neelima Khare or Sunil Kumar Bonagani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khare, N., Bonagani, S.K., Limaye, P.K. et al. Effect of Pre-corrosion Damage on Dry Sliding Wear Behavior of Differently Heat-Treated Martensitic Stainless Steel. J. of Materi Eng and Perform 33, 618–633 (2024). https://doi.org/10.1007/s11665-023-08016-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08016-y

Keywords

Navigation