Skip to main content
Log in

An Experimental Study on Improving Grindability with LN2 Coolant for Grinding AISI D2 Tool Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In today’s modern manufacturing era, it is critical to have an environmentally friendly machining system. This research introduced a novel approach with a developed setup for applying liquid nitrogen (LN2) cryogen in cryogenic machining as an environmental concern. In order to facilitate meaningful comparisons, grinding experiments were carried out in three distinct environments: dry, wet, and cryogenic cooling. The experimental results revealed that compared to dry and wet cooling, cryogenic cooling is beneficial in lowering the grinding force (54-64% and 38-45% in Ft, 44-55% and 31-35% in Fn), reducing the temperature (64-69% and 50-56%), improving the surface finish, causing less damage to the surface condition, and forming C-type or semicircular chips. Also, the influences of different process parameters, which include table feed rate and cryogen pressure, on surface characteristics of AISI D2 tool steel while employing surface functional indices, namely, surface bearing index (Sbi) and core fluid retention index (Sci), were investigated. Outcomes showed that the Sbi and Sci values in cryogenic grinding were greater than those of dry and wet grinding under the same conditions. It was clearly observed that the results of Sbi and Sci under cryogenic cooling indicated better surface characteristics over the bearing characteristics and fluid retention properties of the ground sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R. Choudhary, H. Kumar, and S. Singh, Machining Performance and Surface Integrity of AISI D2 Die Steel Machined Using Electrical Discharge Surface Grinding Process, J. Mater. Eng. Perform., 2013, 22(12), p 3665–3673.

    Article  CAS  Google Scholar 

  2. M.A.S. Bin-Abdul-Rahim, M. Bin-Minhat, N.I.S.B. Hussein, and M.S. Bin-Salleh, A Comprehensive Review on Cold Work of AISI D2 Tool Steel, Metall. Res. Technol., 2018 https://doi.org/10.1051/metal/2017048

    Article  Google Scholar 

  3. J.P. Davim and L. Figueira, Machinability Evaluation in Hard Turning of Cold Work Tool Steel (D2) with Ceramic Tools Using Statistical Techniques, Mater. Des., 2007, 28(4), p 1186–1191. https://doi.org/10.1016/j.matdes.2006.01.011

    Article  CAS  Google Scholar 

  4. J.P. Davim and L. Figueira, Comparative Evaluation of Conventional and Wiper Ceramic Tools on Cutting Forces, Surface Roughness and Tool Wear in Hard Turning AISI D2 Steel, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2007, 221(4), p 625–633. https://doi.org/10.1243/09544054JEM762

    Article  CAS  Google Scholar 

  5. V. Diwakar, A. Sharma, M.Z.K. Yusufzai, and M. Vashista, Barkhausen Noise Signal Analysis of IS 2062 Steel and AISI D2 Tool Steel with Different Range of Magnetizing Frequency and Intensity, Russ. J. Nondestruct. Test., 2022, 58(9), p 821–832.

    Article  Google Scholar 

  6. A. Chaudhari, A. Sharma, A.S. Awale, M.Z. Khan Yusufzai, and M. Vashista, Modeling and Simulation Study of Dry Ultrasonic Vibration-Assisted Grinding of Tool Steel With Single Alumina Abrasive Grit, J. Manuf. Sci. Eng., 2022, 144(11), p 1–11.

    Article  Google Scholar 

  7. P.H. Bee, S. Devaraj, M.L.R.C. Lahari, P.H.V.S.T. Sai, and K.S. Narayanaswamy, A Review on Influence of Nano-Fluid MQL in Machining Processes, AIP Conf. Proc., 2021, 2317, p 100423.

    Google Scholar 

  8. A.K. Singh, A. Kumar, V. Sharma, and P. Kala, Sustainable Techniques in Grinding: State of the Art Review, J. Clean. Prod., 2020, 269, p 121876.

    Article  Google Scholar 

  9. J.P. Davim, Modern Machining Technology: A Practical Guide, Elsevier, Amsterdam, 2011.

    Book  Google Scholar 

  10. J.P. Davim, Machining: Fundamentals and Recent Advances, Springer, New York, 2008.

    Google Scholar 

  11. P.J. Pawar, R.V. Rao, and J.P. Davim, Multiobjective Optimization of Grinding Process Parameters Using Particle Swarm Optimization Algorithm, Mater. Manuf. Process., 2010, 25(6), p 424–431.

    Article  CAS  Google Scholar 

  12. M.J. Jackson and J.P. Davim, Machining with Abrasives, Springer, New York, 2011.

    Book  Google Scholar 

  13. C. Heinzel, J. Heinzel, N. Guba, and T. Hüsemann, Comprehensive Analysis of the Thermal Impact and Its Depth Effect in Grinding, CIRP Ann., 2021, 70(1), p 289–292.

    Article  Google Scholar 

  14. P.J. Blau and B.C. Jolly, Relationships between Abrasive Wear, Hardness, and Grinding Characteristics of Titanium-Based Metal-Matrix Composites, J. Mater. Eng. Perform., 2009, 18(4), p 424–432.

    Article  CAS  Google Scholar 

  15. S. Majumdar, P. Das, S. Kumar, D. Roy, and S. Chakraborty, Evaluation of Cutting Fluid Application in Surface Grinding, Meas. J. Int. Meas. Confed., 2021, 169, p 108464.

    Article  Google Scholar 

  16. S. Pervaiz, S. Kannan, and H.A. Kishawy, An Extensive Review of the Water Consumption and Cutting Fluid Based Sustainability Concerns in the Metal Cutting Sector, J. Clean. Prod., 2018, 197, p 134–153.

    Article  Google Scholar 

  17. K. Kishore, M.K. Sinha, A. Singh, M.K.G. Archana, and M.E. Korkmaz, A Comprehensive Review on the Grinding Process: Advancements, Applications and Challenges, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2022, 22(2002), p 10923–10952.

    Article  Google Scholar 

  18. B. Ozcelik, E. Kuram, M. Huseyin Cetin, and E. Demirbas, Experimental Investigations of Vegetable Based Cutting Fluids with Extreme Pressure during Turning of AISI 304L, Tribol. Int., 2011, 44(12), p 1864–1871. https://doi.org/10.1016/j.triboint.2011.07.012

    Article  CAS  Google Scholar 

  19. K. Ishfaq, I. Anjum, C.I. Pruncu, M. Amjad, M.S. Kumar, and M.A. Maqsood, Progressing towards Sustainable Machining of Steels: A Detailed Review, Materials (Basel), 2021, 14(18), p 1–47.

    Article  Google Scholar 

  20. J.P. Davim, Sustainable Manufacturing, Willey, Hoboken, 2010.

    Google Scholar 

  21. X. Cui, Y. Guo, J. Guo, and P. Ming, Bio-Inspired Design of Cleaner Interrupted Turning and Its Effects on Specific Cutting Energy and Harmful Gas Emission, J. Clean. Prod., 2020, 271, p 122354.

    Article  CAS  Google Scholar 

  22. G. Manimaran, M. Pradeep Kumar, and R. Venkatasamy, Influence of Cryogenic Cooling on Surface Grinding of Stainless Steel 316, Cryogenics (Guildf), 2014, 59, p 76–83. https://doi.org/10.1016/j.cryogenics.2013.11.005

    Article  CAS  Google Scholar 

  23. A.B. Chattopadhyay, A. Bose, and A.K. Chattopdhyay, Improvements in Grinding Steels by Cryogenic Cooling, Precis. Eng., 1985, 7(2), p 93–98.

    Article  Google Scholar 

  24. S. Paul, P.P. Bandyopadhyay, and A.B. Chattopadhyay, Effects of Cryo-Cooling in Grinding Steels, J. Mater. Process. Tech., 1993, 37(1–4), p 791–800.

    Article  Google Scholar 

  25. M.K. Sinha, R. Madarkar, S. Ghosh, and V.R. Paruchuri, Some Investigations in Grindability Improvement of Inconel 718 under Ecological Grinding, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2019, 233(3), p 727–744.

    Article  CAS  Google Scholar 

  26. D. Setti, N.K. Yadav, and S. Ghosh, Grindability Improvement of Ti-6Al-4V Using Cryogenic Cooling, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2014, 228(9), p 1131–1137.

    Article  CAS  Google Scholar 

  27. L. Zhou, S. Huang, and X. Yu, Machining Characteristics in Cryogenic Grinding of SiCp/Al Composites, Acta Metall. Sin. Engl. Lett. Chin. Soc. Metals, 2014, 27(5), p 869–874.

    Article  CAS  Google Scholar 

  28. H. Chen, J. Tang, W. Shao, and B. Zhao, An Investigation on Surface Functional Parameters in Ultrasonic-Assisted Grinding of Soft Steel, Int. J. Adv. Manuf. Technol., 2018, 97(5–8), p 2697–2702. https://doi.org/10.1007/s00170-018-2164-x

    Article  Google Scholar 

  29. S. Paul and A.B. Chattopadhyay, Environmentally Conscious Machining and Grinding with Cryogenic Cooling, Mach. Sci. Technol., 2006, 10(1), p 87–131.

    Article  CAS  Google Scholar 

  30. A. Sharma, M.Z. Khan Yusufzai, and M. Vashista, A Comparative Analysis of Grinding of AISI D2 Tool Steel under Different Environments, Mach. Sci. Technol., 2022, 26(2), p 183–202. https://doi.org/10.1080/10910344.2022.2044853

    Article  CAS  Google Scholar 

  31. G. Manimaran and M. Pradeep Kumar, Effect of Cryogenic Cooling and Sol-Gel Alumina Wheel on Grinding Performance of AISI 316 Stainless Steel, Arch. Civ. Mech. Eng., 2013, 13(3), p 304–312. https://doi.org/10.1016/J.ACME.2013.03.002

    Article  Google Scholar 

  32. G. Manimaran, M. Pradeep Kumar, and R. Venkatasamy, Surface Modifications in Grinding AISI D3 Steel Using Cryogenic Cooling, J. Braz. Soc. Mech. Sci. Eng., 2015, 37(4), p 1357–1363.

    Article  CAS  Google Scholar 

  33. A. Chaudhari, A. Sharma, M.Z.K. Yusufzai, and M. Vashista, Experimental Analyses into Dry Ultrasonic Vibration-Assisted Grinding of Difficult-to-Machine Tool Steel with Alumina Wheel, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-07444-6

    Article  Google Scholar 

  34. J.P. Davim, Surface Integrity in Machining, Springer, New York, 2010.

    Book  Google Scholar 

  35. A.S. Awale, A. Srivastava, M. Vashista, and M.Z. Khan Yusufzai, Influence of Minimum Quantity Lubrication on Surface Integrity of Ground Hardened H13 Hot Die Steel, Int. J. Adv. Manuf. Technol., 2019, 100(1–4), p 983–997. https://doi.org/10.1007/s00170-018-2777-0

    Article  Google Scholar 

  36. P. Pawlus, R. Reizer, and M. Wieczorowski, Functional Importance of Surface Texture Parameters, Materials (Basel), 2021 https://doi.org/10.3390/ma14185326

    Article  Google Scholar 

  37. R. Deltombe, K.J. Kubiak, and M. Bigerelle, How to Select the Most Relevant 3D Roughness Parameters of a Surface, Scanning, 2014, 36(1), p 150–160.

    Article  CAS  Google Scholar 

  38. S. Malkin and C. Guo, Grinding Technology: Theory and Application of Machining with Abrasives, Industrial Press Inc, New York, 2008.

    Google Scholar 

  39. B. Rajmohan and V. Radhakrishnan, A Study on the Thermal Aspects of Chips in Grinding, Int. J. Mach. Tools Manuf., 1992, 32(4), p 563–569. https://doi.org/10.1016/0890-6955(92)90045-I

    Article  Google Scholar 

  40. S.Y. Hong, Economical and Ecological Cryogenic Machining, J. Manuf. Sci. Eng. Trans. ASME, 2001, 123(2), p 331–338. https://doi.org/10.1115/1.1315297

    Article  Google Scholar 

  41. J.P. Davim, Mechanical and Industrial Engineering, Springer, New York, 2022.

    Book  Google Scholar 

  42. Y. Kaynak, T. Lu, and I.S. Jawahir, Cryogenic Machining-Induced Surface Integrity: A Review and Comparison with Dry, Mql, and Flood-Cooled Machining, Mach. Sci. Technol., 2014, 18(2), p 149–198. https://doi.org/10.1080/10910344.2014.897836

    Article  CAS  Google Scholar 

  43. A. Chaudhari, A. Sharma, A.S. Awale, M.Z.K. Yusufzai, and M. Vashista, Effect of Ultrasonic Vibration Assisted Dry Grinding on Hysteresis Loop Characteristics of AISI D2 Tool Steel, Sadhana Acad. Proc. Eng. Sci., 2021, 46(4), p 1–12.

    Google Scholar 

  44. A. Awale, A. Srivastava, M. Vashista, and M.Z.K. Yusufzai, Surface Integrity Characterization of Ground Hardened H13 Hot Die Steel Using Different Lubrication Environments, Mater. Res. Exp., 2019, 6(2), p 983–997.

    Google Scholar 

  45. K.K. Gajrani, Assessment of Cryo-MQL Environment for Machining of Ti-6Al-4V, J. Manuf. Process., 2020, 60, p 494–502.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the funding support received from IIT (BHU) under the sprouting grant (letter no. IIT (BHU)/Dec/2013-14/5110/L) and Institute Research Project (IIT(BHU)/R&D)/IRP/2015-16/2832).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghanshu Vashista.

Ethics declarations

Conflict interest

The authors declared no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The surface bearing index, Sbi, is defined to characterize the bearing characteristic of a surface. A surface with a higher Sbi offers superior bearing properties. The equation for calculating the Sbi:

$$Sbi = \frac{{S_{q} }}{{\eta_{0.05} }}$$
(1)

where Sq: root-mean-square (RMS) deviation; \(\eta_{0.05}\): surface height at 5% bearing area.

The core fluid retention index, Sci, is defined to characterize the property of fluid retention in the core zone. A greater Sci indicates that the surface can retain enough lubricants in the core zone, which is essential for better lubrication. The equation for calculating the Sci:

$$Sci = \frac{1}{{S_{q} }}\;\frac{{V_{v} \left( {h_{0.05} } \right) - V_{v} \left( {h_{0.08} } \right)}}{{\left( {M - 1} \right)\left( {N - 1} \right)\Delta x\Delta y}}$$
(2)

where \(V_{v} \left( {h_{0.05} } \right)\): void volume of the surface heights, \(h_{0.05}\); \(V_{v} \left( {h_{0.08} } \right)\): void volume of the surface heights, \(h_{0.08}\); M, and N indicate the number of sampling points in the \(x\) and \(y\) directions, and Δ\(x\) and Δ\(y\) are the sampling intervals.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Chaudhari, A., Yusufzai, M.Z.K. et al. An Experimental Study on Improving Grindability with LN2 Coolant for Grinding AISI D2 Tool Steel. J. of Materi Eng and Perform 33, 64–78 (2024). https://doi.org/10.1007/s11665-023-07958-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07958-7

Keywords

Navigation