Skip to main content

Advertisement

Log in

Superior Strength Enhancement of Ti/V Co-Doped CoCrNi Multicomponent Alloys

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To improve the mechanical properties of CoCrNi system multicomponent alloys, we prepared a series of (CoCrNi)100-x(TiV)x (x = 5, 10, 20, 30, and 40) multicomponent alloys by simultaneously adding Ti and V elements into the CoCrNi-based alloy at a fixed stoichiometric ratio (1:1). Results showed that the phase components of the prepared alloys with x ≤ 10 were composed of a typical single face-centered cubic phase. The elements in the alloy (CoCrNi)95(TiV)5 were uniformly distributed, whereas the Ti in the (CoCrNi)90(TiV)10 alloy was segregated in the based microstructure. The yield strength of (TiV)10 alloy (678 MPa) was approximately two times that of (TiV)5 alloy (371 MPa), with non-sacrificed plasticity (> 50%). The enhancement of yield strength of the alloy was attributed to precipitation strengthening caused by the Ti segregation and the solid solution strengthening of TiV. Stiff phases σ, η, and body-centered cubic were formed in the alloys with higher TiV content and distributed in both the dendrites and inter-dendrites regions, thus increasing the compression strength of the alloy. The maximum compression strength was 2220 MPa of the alloy with x = 40.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218.

    Article  Google Scholar 

  2. B.S. Murty, J.W. Yeh, S. Ranganathan, and P.P. Bhattacharjee, A Brief History of Alloys and the Birth of High-Entropy Alloys, High-Entropy Alloys, 2nd ed. Elsevier, Amsterdam, 2019, p 1–12

    Google Scholar 

  3. Y.F. Ye, Y.H. Zhang, Q.F. He, Y. Zhuang, S. Wang, S.Q. Shi, A. Hu, J. Fan, and Y. Yang, Atomic-Scale Distorted Lattice in Chemically Disordered Equimolar Complex Alloys, Acta Mater., 2018, 150, p 182–194.

    Article  CAS  Google Scholar 

  4. K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys, Acta Mater., 2013, 61(13), p 4887–4897.

    Article  CAS  Google Scholar 

  5. J.W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, JOM, 2013, 65(12), p 1759–1771.

    Article  CAS  Google Scholar 

  6. A.S. Tirunilai, T. Hanemann, C. Reinhart, V. Tschan, K.P. Weiss, G. Laplanche, J. Freudenberger, M. Heilmaier, and A. Kauffmann, Comparison of Cryogenic Deformation of the Concentrated Solid Solutions CoCrFeMnNi, CoCrNi and CoNi, Mater. Sci. Eng. A, 2020, 783, p 139290.

    Article  CAS  Google Scholar 

  7. S. Gangireddy, B. Gwalani, K. Liu, R. Banerjee, and R.S. Mishra, Microstructures with Extraordinary Dynamic Work Hardening and Strain Rate Sensitivity in Al0.3CoCrFeNi High Entropy Alloy, Mater. Sci. Eng. A, 2018, 734, p 42–50.

    Article  CAS  Google Scholar 

  8. D. Wei, W. Gong, L. Wang, B. Tang, T. Kawasaki, S. Harjo, and H. Kato, Strengthening of High-Entropy Alloys via Modulation of Cryo-Pre-Straining-Induced Defects, J. Mater. Sci. Technol., 2022, 129, p 251–260.

    Article  Google Scholar 

  9. D. Wei, L. Wang, and Y. Zhang, Metalloid Substitution Elevates Simultaneously the Strength and Ductility of Face-Centered-Cubic High-Entropy Alloys, Acta Mater., 2022, 225, p 117571.

    Article  CAS  Google Scholar 

  10. J. Saha and P.P. Bhattacharjee, Influences of Thermomechanical Processing by Severe Cold and Warm Rolling on the Microstructure, Texture, and Mechanical Properties of an Equiatomic CoCrNi Medium-Entropy Alloy, J. Mater. Eng. Perform., 2021, 30(12), p 8956–8971.

    Article  CAS  Google Scholar 

  11. H.L. Yi, D.X. Wei, Y.C. Wang, L.Q. Wang, M.Y. Fang, K. Yang, and H. Kato, Hot Deformation and Dynamic Recrystallization Behavior of CoCrNi and (CoCrNi)94Ti3Al3 Medium Entropy Alloys, Metals, 2020, 10(10), p 1341.

    Article  CAS  Google Scholar 

  12. S. Yoshida, T. Bhattacharjee, Y. Bai, and N. Tsuji, Friction Stress and Hall-Petch Relationship in CoCrNi Equi-atomic Medium Entropy Alloy Processed by Severe Plastic Deformation and Subsequent Annealing, Scr. Mater., 2017, 134, p 33–36.

    Article  CAS  Google Scholar 

  13. K. Xiang, L. Chai, C. Zhang, H. Guan, Y. Wang, Y. Ma, Q. Sun, and Y. Li, Investigation of Microstructure and Wear Resistance of Laser-clad CoCrNiTi and CrFeNiTi Medium-Entropy Alloy Coatings on Ti Sheet, Opt. Laser Technol., 2022, 145, p 107518.

    Article  CAS  Google Scholar 

  14. W. Lu, X. Luo, Y. Yang, and B. Huang, Effects of Nb Additions on Structure and Mechanical Properties Evolution of CoCrNi Medium-Entropy Alloy, Mater. Express, 2019, 9(4), p 291–298.

    Article  CAS  Google Scholar 

  15. D.H. Chung, X.D. Liu, and Y. Yang, Fracture of Sigma Phase Containing Co-Cr-Ni-Mo Medium Entropy Alloys, J. Alloys Compd., 2020, 846, p 156189.

    Article  CAS  Google Scholar 

  16. Q. Hu, F.C. Liu, Q.L. Fan, H. Du, G. Liu, G.-H. Wang, Z.T. Fan, and X.W. Liu, Effect of Al on Microstructure and Mechanical Properties of Cast CrCoNi Medium-Entropy Alloy, China Foundry, 2018, 15(4), p 253–262.

    Article  Google Scholar 

  17. Y. Du, X. Pei, Z. Tang, F. Zhang, Q. Zhou, H. Wang, and W. Liu, Mechanical and Tribological Performance of CoCrNiHf Eutectic Medium-Entropy Alloys, J. Mater. Sci. Technol., 2021, 90, p 194–204.

    Article  CAS  Google Scholar 

  18. W. Lu, X. Luo, Y. Yang, J. Zhang, and B. Huang, Effects of Al Addition on Structural Evolution and Mechanical Properties of the CrCoNi Medium-Entropy Alloy, Mater. Chem. Phys., 2019, 238, p 121841.

    Article  CAS  Google Scholar 

  19. Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, and J.J. Kai, Heterogeneous Precipitation Behavior and Stacking-Fault-Mediated Deformation in a CoCrNi-Based Medium-Entropy Alloy, Acta Mater., 2017, 138, p 72–82.

    Article  CAS  Google Scholar 

  20. D.D. Zhang, J.Y. Zhang, J. Kuang, G. Liu, and J. Sun, Superior Strength-Ductility Synergy and Strain Hardenability of Al/Ta Co-doped NiCoCr Twinned Medium Entropy Alloy for Cryogenic Applications, Acta Mater., 2021, 220, p 117288.

    Article  CAS  Google Scholar 

  21. Y. Pan, A. Dong, Y. Zhou, D. Du, D. Wang, G. Zhu, and B. Sun, Enhanced Strength-Ductility Synergy in a Novel V-Containing γ″-Strengthened CoCrNi-Based Multi-Component Alloy, Mater. Sci. Eng. A, 2021, 816, p 141289.

    Article  CAS  Google Scholar 

  22. B. Han, J. Wei, Y. Tong, D. Chen, Y. Zhao, J. Wang, F. He, T. Yang, C. Zhao, Y. Shimizu, K. Inoue, Y. Nagai, A. Hu, C.T. Liu, and J.J. Kai, Composition Evolution of Gamma Prime Nanoparticles in the Ti-Doped CoFeCrNi High Entropy Alloy, Scr. Mater., 2018, 148, p 42–46.

    Article  CAS  Google Scholar 

  23. B. Yin, F. Maresca, and W.A. Curtin, Vanadium is an Optimal Element for Strengthening in both fcc and bcc High-Entropy Alloys, Acta Mater., 2020, 188, p 486–491.

    Article  CAS  Google Scholar 

  24. Z. Cai, G. Jin, X. Cui, Y. Li, Y. Fan, and J. Song, Experimental and Simulated Data about Microstructure and Phase Composition of a NiCrCoTiV High-Entropy Alloy Prepared by Vacuum Hot-Pressing Sintering, Vacuum, 2016, 124, p 5–10.

    Article  CAS  Google Scholar 

  25. L. Zhang, X. Du, L. Zhang, W. Li, Y. Liang, J. Yu, N. Zou, G. Wan, Y. Tang, G. Duan, and B. Wu, Achieving Ultra-High Strength in a Precipitation-Hardened CoCrNi-Based Medium-Entropy Alloy with Partially Recrystallized Microstructure and Heterogeneous Grains, Vacuum, 2021, 188, p 110169.

    Article  CAS  Google Scholar 

  26. D. Petroglou, A. Poulia, C. Mathiou, E. Georgatis, and A.E. Karantzalis, A Further Examination of MoTaxNbVTi (x = 0.25, 0.50, 0.75 and 1.00 at.%) High-Entropy Alloy System: Microstructure, Mechanical Behavior and Surface Degradation Phenomena, Appl. Phys. A Mater., 2020, 126(5), p 126364.

    Article  Google Scholar 

  27. Y. Chen, W. Liu, H. Wang, J. Xie, T. Zhang, L. Yin, and Y. Huang, Effect of Ti Content on the Microstructure and Properties of CoCrFeNiMnTix High Entropy Alloy, Entropy (Basel), 2022, 24(2), p 241.

    Article  CAS  Google Scholar 

  28. Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with Face-Centered Cubic Crystal Structures, Acta Mater., 2014, 81, p 428–441.

    Article  CAS  Google Scholar 

  29. Y. Cai, Y. Tong, Y. Hu, H. Huang, X. Zhang, M. Hua, S. Xu, Y. Mei, C. Ma, and Z. Li, Wear-Resistant TiC Strengthening CoCrNi-Based High-Entropy Alloy Composite, Materials, 2021, 14(16), p 4665.

    Article  CAS  Google Scholar 

  30. F. Průša, M. Cabibbo, A. Šenková, V. Kučera, Z. Veselka, A. Školáková, D. Vojtěch, J. Cibulková, and J. Čapek, High-Strength Ultrafine-Grained CoCrFeNiNb High-Entropy Alloy Prepared by Mechanical Alloying: Properties and Strengthening Mechanism, J. Alloys Compd., 2020, 835, p 155308.

    Article  Google Scholar 

  31. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys, Adv. Eng. Mater., 2008, 10(6), p 534–538.

    Article  CAS  Google Scholar 

  32. X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-component Alloys, Mater. Chem. Phys., 2012, 132(2–3), p 233–238.

    Article  CAS  Google Scholar 

  33. S. Guo and C.T. Liu, Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase, Prog. Nat. Sci. Mater. Int., 2011, 21(6), p 433–446.

    Article  Google Scholar 

  34. S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of Valence Electron Concentration on Stability of fcc or bcc Phase in High Entropy Alloys, J. Appl. Phys., 2011, 109(10), p 103505.

    Article  Google Scholar 

  35. A. Takeuchi and A. Inoue, Mixing Enthalpy of Liquid Phase Calculated by Miedema’s Scheme and Approximated with Sub-Regular Solution Model for Assessing Forming Ability of Amorphous and Glassy Alloys, Intermetallics, 2010, 18(9), p 1779–1789.

    Article  CAS  Google Scholar 

  36. M.-H. Tsai, K.-Y. Tsai, C.-W. Tsai, C. Lee, C.-C. Juan, and J.-W. Yeh, Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys, Mater. Res. Lett., 2013, 1(4), p 207–212.

    Article  CAS  Google Scholar 

  37. F. Otto, Y. Yang, H. Bei, and E.P. George, Relative Effects of Enthalpy and Entropy on the Phase Stability of Equiatomic High-Entropy Alloys, Acta Mater., 2013, 61(7), p 2628–2638.

    Article  CAS  Google Scholar 

  38. Y.H. Jo, W.M. Choi, D.G. Kim, A. Zargaran, K. Lee, H. Sung, S.S. Sohn, H.S. Kim, B.J. Lee, and S. Lee, Utilization of Brittle σ Phase for Strengthening and Strain Hardening in Ductile VCrFeNi High-Entropy Alloy, Mater. Sci. Eng. A, 2019, 743, p 665–674.

    Article  CAS  Google Scholar 

  39. D. You, G. Yang, Y.-H. Choa, and J.-K. Kim, Crack-Resistant σ/FCC Interfaces in the Fe40Mn40Co10Cr10 High Entropy Alloy with the Dispersed σ-Phase, Mater. Sci. Eng. A, 2022, 831, p 142039.

    Article  CAS  Google Scholar 

  40. J.M. Joubert, Crystal Chemistry and Calphad Modeling of the σ Phase, Prog. Mater. Sci., 2008, 53(3), p 528–583.

    Article  CAS  Google Scholar 

  41. A.C. Yeh, Y.J. Chang, C.W. Tsai, Y.C. Wang, J.W. Yeh, and C.M. Kuo, On the Solidification and Phase Stability of a Co-Cr-Fe-Ni-Ti High-Entropy Alloy, Metall. Mater. Trans. A, 2013, 45(1), p 184–190.

    Article  Google Scholar 

  42. Y. Chen, Z. Xu, M. Wang, Y. Li, C. Wu, and Y. Yang, A Single-Phase V0.5Nb0.5ZrTi Refractory High-Entropy Alloy with Outstanding Tensile Properties, Mater. Sci. Eng. A, 2020, 792, p 139774.

    Article  CAS  Google Scholar 

  43. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy, J. Alloys Compd., 2011, 509(20), p 6043–6048.

    Article  CAS  Google Scholar 

  44. X. Yan and Y. Zhang, A body-Centered Cubic Zr50Ti35Nb15 Medium-Entropy Alloy with Unique Properties, Scr. Mater., 2020, 178, p 329–333.

    Article  CAS  Google Scholar 

  45. https://www.webelements.com/.

  46. http://www.goodfellow.com/catalogue.html.

  47. N. Ramakrishnan, An Analytical Study on Strengthening of Particulate Reinforced Metal Matrix Composites, Acta Mater., 1996, 44(1), p 69–77.

    Article  CAS  Google Scholar 

  48. Z. Zhang and D. Chen, Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting their Yield Strength, Scr. Mater., 2006, 54(7), p 1321–1326.

    Article  CAS  Google Scholar 

  49. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Effects of Al Addition on Structural Evolution and Tensile Properties of the FeCoNiCrMn High-Entropy Alloy System, Acta Mater., 2014, 62, p 105–113.

    Article  CAS  Google Scholar 

  50. O.N. Senkov, D.B. Miracle, K.J. Chaput, and J.-P. Couzinie, Development and exploration of refractory high entropy alloys–A review, J. Mater. Res., 2018, 33(19), p 3092–3128.

    Article  CAS  Google Scholar 

  51. G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, and O.N. Senkov, Effect of Mn and V on Structure and Mechanical Properties of High-Entropy Alloys Based on CoCrFeNi System, J. Alloys Compd., 2014, 591, p 11–21.

    Article  CAS  Google Scholar 

  52. G.J. Li, J. Li, and X. Luo, Effects of High Temperature Treatment on Microstructure and Mechanical Properties of Laser-clad NiCrBSi/WC Coatings on Titanium Alloy Substrate, Mater. Charact., 2014, 98, p 83–92.

    Article  CAS  Google Scholar 

  53. M. Xu, J. Wang, L. Wang, L. Yang, and J. Yi, Influence of Annealing on Microstructure and Mechanical Properties of Equiatomic CoCrNiTiV 3d Transition Metal High Entropy Alloy Ingots, Mater. Trans., 2021, 62(11), p 1609–1613.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from Changzhou Science and Technology Bureau (CJ20210065, CQ20210086, No. CJ20220057) and Graduate Practice and Innovation Projects of Jiangsu University of Technology (XSJCX22_08) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingqin Xu or Jiaojiao Yi.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., He, Q., Wang, L. et al. Superior Strength Enhancement of Ti/V Co-Doped CoCrNi Multicomponent Alloys. J. of Materi Eng and Perform 32, 10591–10601 (2023). https://doi.org/10.1007/s11665-023-07896-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07896-4

Keywords

Navigation