Skip to main content
Log in

Optimizing 304 Stainless Steel Surface Performance with CoCrFeMoNi High-Entropy Alloy Coating via Gas Tungsten Arc Cladding

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

CoCrFeMoNi high entropy alloy (HEA) coatings were fabricated on the surface of the 304 stainless steel (304SS) via argon tungsten arc cladding process. The microstructure, micro-hardness and tribological performance, and corrosion behavior of the HEA coatings were investigated. Results indicate the boundary between the coating and the substrate shows a metallurgical bonding. The properties of CoCrFeMoNi HEA coatings are closely correlated with the process parameters. A maximum average hardness of 585 HV was obtained, which is about 3 times that of the substrate, and this verifies surface strengthening effect of CoCrFeMoNi HEA. Most of the coatings show better wear resistance than the substrate; that is, the minimum volume wear rate of coating reduced by 58% compared to the substrate. In addition, CoCrFeMoNi HEA coatings show similar corrosion voltage and current values to 304SS in 3.5 wt.% NaCl solution. A broader passivation zone and pitting resistance have been obtained, showing a better passivation film formation ability and resistance to pit corrosion as compared to 304SS. Overall, the optimal performance of the CoCrFeMoNi HEA coatings was obtained at an electric current density of 125A, arc scanning rate of 60 mm/min and argon flow of 10 L/min. Surface optimization of 304SS can be achieved through argon tungsten arc cladding CoCrFeMoNi HEA coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.S. Meng, G. Jin, and X.P. Shi, Structure and Tribological Properties of Argon Arc Cladding Ni-Based Nanocrystalline Coatings, Appl. Surf. Sci., 2018, 431, p 135–142. https://doi.org/10.1016/j.apsusc.2017.05.238

    Article  CAS  Google Scholar 

  2. A.U. Orlowicz and A. Trytek, Use of the GTAW Method for Surface Hardening of Cast-Iron, Weld. Int., 2005, 19(5), p 341–348. https://doi.org/10.1533/wint.2005.3438

    Article  Google Scholar 

  3. S. Mridha, H.S. Ong, L.S. Poh, and P. Cheang, Intermetallic Coatings Produced by TIG Surface Melting, J. Mater. Process. Technol., 2001, 113(1–3), p 516–520. https://doi.org/10.1016/S0924-0136(01)00609-4

    Article  CAS  Google Scholar 

  4. D. Tijo and M. Masanta, Effect of Ti/B4C Ratio on the Microstructure and Mechanical Characteristics of TIG Cladded TiC-TiB2 Coating on Ti-6Al-4V Alloy, J. Mater. Process. Technol., 2019, 266, p 184–197. https://doi.org/10.1016/j.jmatprotec.2018,11:p005

    Article  CAS  Google Scholar 

  5. S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, and P. Colegrove, Wire + Arc Additive Manufacturing, Mater. Sci. Technol., 2016, 32(7), p 641–647. https://doi.org/10.1179/1743284715Y.0000000073

    Article  CAS  Google Scholar 

  6. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218. https://doi.org/10.1016/j.msea.2003,10:p257

    Article  Google Scholar 

  7. M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, High-Entropy Materials: Fundamentals and Applications, Springer International Publishing, Cham, Switzerland, 2016. https://doi.org/10.1007/978-3-319-27013-5

    Book  Google Scholar 

  8. C. Chen, N. Liu, J. Zhang, J. Cao, L.J. Wang, and H.F. Xiang, Microstructure Stability and Oxidation Behavior of (FeCoNiMo)90 (Al/Cr)10 High-Entropy Alloys, Mater. Sci. Technol., 2019, 35, p 1883–1890. https://doi.org/10.1080/02670836.2019.1652785

    Article  CAS  Google Scholar 

  9. M. Zhu, L.J. Yao, Y.Q. Liu, M. Zhang, K. Li, and Z.Y. Jian, Microstructure Evolution and Mechanical Properties of a Novel CrNbTiZrAlx (0.25 ≤ x ≤ 1.25) Eutectic Refractory High-Entropy Alloy, Mater. Lett., 2020, 272, p 127869. https://doi.org/10.1016/j.matlet.2020.127869

    Article  CAS  Google Scholar 

  10. D.D. Zhang, J.Y. Zhang, J. Kuang, G. Liu, and J. Sun, Low Modulus-Yet-Hard, Deformable Multicomponent Fibrous B2-Phase Making a Medium-Entropy Alloy Ultra-Strong and Ductile, Scr. Mater., 2023, 222, p 115058. https://doi.org/10.1016/j.scriptamat.2022.115058

    Article  CAS  Google Scholar 

  11. N. Liu, Y.Y. Qian, Z. Lan, and W.D. Du, Microstructural Evolution and Solidification Behavior of (CoCrNi)100−xNbx Medium-Entropy-Alloys, Int. J. Mater. Res., 2022, 113(11), p 984–991. https://doi.org/10.1515/ijmr-2022-0136

    Article  CAS  Google Scholar 

  12. Y. Zhang, Z. Chen, and D.D. Cao et al., Concurrence of Spinodal Decomposition and Nano-Phase Precipitation in a Multi- Component AlCoCrCuFeNi High-Entropy Alloy, J. Mater. Res. Technol., 2019, 8(1), p 726–736. https://doi.org/10.1016/j.jmrt.2018.04.020

    Article  CAS  Google Scholar 

  13. Y.P. Lu, X.X. Wu, Z.H. Fu, Q.K. Yang, Y. Zhang, Q.M. Liu, T.X. Li, Y.Z. Tian, H. Tan, Z.M. Li, T.M. Wang, and T.J. Li, ductile and Ultrahigh-Strength Eutectic High-Entropy Alloys by Large-Volume 3D Printing, J. Mater. Sci. Technol., 2022, 126, p 15–21. https://doi.org/10.1016/j.jmst.2022.04.004

    Article  CAS  Google Scholar 

  14. M.T. Wall, M.V. Pantawane, S. Joshi, F. Gantz, N.A. Ley, R. Mayer, A. Spires, M.L. Young, and N. Dahotre, Laser-Coated CoFeNiCrAlTi High Entropy Alloy onto a H13 Steel Die Head, Surf. Coat. Technol., 2020, 387, p 125473. https://doi.org/10.1016/j.surfcoat.2020.125473

    Article  CAS  Google Scholar 

  15. Q.X. Hu, X.L. Wang, J.Y. Miao, and X.W. Shen, Friction and Wear Performance of CoCrFeMnNiW Medium-Entropy Alloy Coatings by Plasma-Arc Surfacing Welding, Coatings, 2021, 11, p 715. https://doi.org/10.3390/COATINGS11060715

    Article  Google Scholar 

  16. Q.X. Hu, X.L. Wang, X.W. Shen, F.L. Fu, and Z.M. Tan, Wear and Corrosion Resistance of CoCrFeNiSiMoW Medium-Entropy Alloy Coatings on Q235 Steel, Coatings, 2021, 11, p 1053. https://doi.org/10.3390/coatings11091053

    Article  CAS  Google Scholar 

  17. Y.T. Li, P. Zhang, J.Y. Zhang, Z. Chen, and B.L. Shen, Oxidation Behavior of AlCoCrFeNiSix High Entropy Alloys at 1100 °C, Corros. Sci., 2021, 190, p 109633. https://doi.org/10.1016/j.corsci.2021.109633

    Article  CAS  Google Scholar 

  18. P. Sorouri Mirazizi, M. Sarkari Khorrami, and M. Heydarzadeh Sohi, Fabrication of FexCoCrAlNi Medium and High Entropy Layers on a Carbon Steel through TIG Cladding, Mater. Chem. Phys., 2022, 290, p 126616. https://doi.org/10.1016/j.matchemphys.2022.126616

    Article  CAS  Google Scholar 

  19. Q. Fan, C. Chen, C. Fan, Z. Liu, X. Cai, S. Lin, and C. Yang, AlCoCrFeNi high-Entropy Alloy Coatings Prepared by Gas Tungsten Arc Cladding: Microstructure, Mechanical and Corrosion Properties, Intermetallics, 2021, 138, p 107337. https://doi.org/10.1016/j.intermet.2021.107337

    Article  CAS  Google Scholar 

  20. Q. Fan, C. Chen, C. Fan, Z. Liu, X. Cai, S. Lin, and C. Yang, Ultrasonic Suppression of Element Segregation in Gas Tungsten Arc Cladding AlCoCuFeNi High-Entropy Alloy Coatings, Surf. Coat. Technol., 2021, 420, p 127364. https://doi.org/10.1016/j.surfcoat.2021.127364

    Article  CAS  Google Scholar 

  21. Q. Fan, C. Chen, C. Fan, Z. Liu, X. Cai, S. Lin, and C. Yang, Effect of High Fe Content on the Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Coatings Prepared by Gas Tungsten Arc Cladding, Surf. Coat. Technol., 2021, 418, p 127242. https://doi.org/10.1016/j.surfcoat.2021.127242

    Article  CAS  Google Scholar 

  22. H. Abed, F.M. Ghaini, and H.R. Shahverdi, Characterization of Fe49Cr18Mo7B16C4Nb6 High-Entropy Hardfacing Layers Produced by Gas Tungsten Arc Welding (GTAW) Process, Surf. Coat. Technol., 2018, 352, p 360–369. https://doi.org/10.1016/j.surfcoat.2018.08.019

    Article  CAS  Google Scholar 

  23. J.P. Oliveira, T.M. Curado, Z. Zeng, J.G. Lopes, E. Rossinyol, J.M. Park, N. Schell, F.M.B. Fernandes, and H.S. Kim, Gas Tungsten Arc Welding of as-rolled CrMnFeCoNi High Entropy Alloy, Mater. Des., 2020, 189, p 108505. https://doi.org/10.1016/j.matdes.2020.108505

    Article  CAS  Google Scholar 

  24. J.P. Oliveira, A. Shamsolhodaei, J.J. Shen, J.G. Lopes, R.M. Gonçalves, M.D.B. Ferraz, L. Picarra, Z. Zeng, N. Schell, N. Zhou, and H.S. Kim, Improving the Ductility in Laser Welded Joints of CoCrFeMnNi High Entropy Alloy to 316 Stainless Steel, Mater. Des., 2022, 219, p 110717. https://doi.org/10.1016/j.matdes.2022.110717

    Article  CAS  Google Scholar 

  25. J.J. Shen, R.M. Gonçalves, Y.T. Choi, J.G. Lopes, J. Yang, N. Schell, H.S. Kim, and J.P. Oliveira, Microstructure and Mechanical Properties of Gas Metal Arc Welded CoCrFeMnNi Joints Using a 410 Stainless Steel Filler Metal, Mater. Sci. Eng. A, 2022, 857, p 144025. https://doi.org/10.1016/j.msea.2022.144025

    Article  CAS  Google Scholar 

  26. H. Nam, S. Park, S.W. Kim, S.H. Shim, Y. Na, N. Kim, S. Song, S.I. Hong, and N. Kang, Enhancement of Tensile Properties Applying Phase Separation with Cu Addition in Gas Tungsten Arc Welds of CoCrFeMnNi High Entropy Alloys, Scr. Mater., 2022, 220, p 114897. https://doi.org/10.1016/j.scriptamat.2022.114897

    Article  CAS  Google Scholar 

  27. Y. Palguna, A.R. Kannan, K. Sairam, N.S. Shanmugam, and R. Korl, Microstructure and Mechanical Properties of Wrought Al0.2CoCrFeNiMo0.5 High Entropy Alloy Using Gas Tungsten Arc Welding Process, Mater. Lett., 2022, 317, p 132109. https://doi.org/10.1016/j.matlet.2022.132109

    Article  CAS  Google Scholar 

  28. Q. Sui, Z. Wang, J. Wang, S. Xu, B. Liu, Q. Yuan, F. Zhao, L. Gong, and J. Liu, Additive Manufacturing of CoCrFeNiMo Eutectic High Entropy Alloy: Microstructure and Mechanical Properties, J Alloy Compd., 2022, 913, p 165239. https://doi.org/10.1016/j.jallcom.2022.165239

    Article  CAS  Google Scholar 

  29. W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, and C.T. Liu, Ductile CoCrFeNiMox High Entropy Alloys Strengthened by Hard Intermetallic Phases, Acta Mater., 2016, 116, p 332. https://doi.org/10.1016/j.actamat.2016.06.063

    Article  CAS  Google Scholar 

  30. T.T. Shun, L.Y. Chang, and M.H. Shiu, Age-Hardening of the CoCrFeNiMo0.85 High-Entropy Alloy, Mater. Charact., 2013, 81, p 92–96. https://doi.org/10.1016/j.matchar.2013.04.012

    Article  CAS  Google Scholar 

  31. P.H. Wu, N. Liu, W. Yang, Z.X. Zhu, Y.P. Lu, and X.J. Wang, Microstructure and Solidification Behavior of Multi- Component CoCrCuxFeMoNi High-Entropy Alloys, Mater. Sci. Eng. A, 2015, 642, p 142–149. https://doi.org/10.1016/j.msea.2015.06.061

    Article  CAS  Google Scholar 

  32. Q. Wu, Z. Wang, F. He, J. Li, and J. Wang, Revealing the Selection of σ and μ Phases in CoCrFeNiMox High Entropy Alloys by CALPHAD, J. Phase Equilib. Diffus., 2018, 39(15), p 446–453. https://doi.org/10.1007/s11669-018-0659-7

    Article  CAS  Google Scholar 

  33. Z.Z. Niu, Y.Z. Wang, C. Geng, J. Xu, and Y. Wang, Microstructural Evolution, Mechanical and Corrosion Behaviors of as-Annealed CoCrFeNiMox (x = 0, 0.2, 0.5, 0.8, 1) High Entropy Alloys, J. Alloy Compd., 2020, 820(15), p 153273. https://doi.org/10.1016/j.jallcom.2019.153273

    Article  CAS  Google Scholar 

  34. X.L. Shang, Z.J. Wang, Q.F. Wu, J.C. Wang, J.J. Li, and J.K. Yu, Effect of Mo Addition on Corrosion Behavior of High-Entropy Alloys CoCrFeNiMox in Aqueous Environments, Acta Metall. Sin., 2019, 32(1), p 41. https://doi.org/10.1007/s40195-018-0812-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Doctor Muye Niu for the helpful discussion on wear mechanism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Lan, Z., Liu, L. et al. Optimizing 304 Stainless Steel Surface Performance with CoCrFeMoNi High-Entropy Alloy Coating via Gas Tungsten Arc Cladding. J. of Materi Eng and Perform 32, 9114–9120 (2023). https://doi.org/10.1007/s11665-022-07781-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07781-6

Keywords

Navigation