Skip to main content
Log in

Nanoparticle Additions Improve the Corrosion Performance of Ni-Cr-Fe-Based Cast Superalloys

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present work investigated the influence of TiC nanoparticles on the microstructure and corrosion performance of a cast superalloy K4169. The eutectic Laves phase is reduced and the as-cast grain size is refined by adding 0.02 wt.% TiC. The formation of δ phases (Ni3Nb) during heat treatments is also suppressed. Thus, the K4169 superalloy with TiC nanoparticles shows better corrosion resistance in sulfuric acid solution (10 vol.% H2SO4 solution). This work provides a strategy to effectively improve the corrosion resistance of conventional cast superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or used during the study are available from the corresponding author upon reasonable request.

References

  1. A. Nowotnik, K. Kubiak, J. Sieniawski, P. Rokicki, P. Pedrak, and G. Mrówka-Nowotnik, Development of Nickel Based Superalloys for Advanced Turbine Engines, Mater. Sci. Forum., 2014, 783–786, p 2491–2496. https://doi.org/10.4028/www.scientific.net/msf.783-786.2491

    Article  Google Scholar 

  2. B. Sutton, E. Herderick, R. Thodla, M. Ahlfors, and A. Ramirez, Heat Treatment of Alloy 718 Made by Additive Manufacturing for Oil and Gas Applications, Jom, 2019, 71, p 1134–1143. https://doi.org/10.1007/s11837-018-03321-7

    Article  CAS  Google Scholar 

  3. K. Patel, M. Sadeghilaridjani, M. Pole, and S. Mukherjee, Hot Corrosion Behavior of Refractory High Entropy Alloys in Molten Chloride Salt for Concentrating Solar Power Systems, Sol. Energy Mater. Sol. Cells, 2021, 230, p 111222. https://doi.org/10.1016/j.solmat.2021.111222

    Article  CAS  Google Scholar 

  4. S. Soller, A. Barata, S. Beyer, A. Dahlhaus, D. Guichard, E. Humbert, J. Kretschmer, and W. Zeiss, Selective laser melting of Inconel 718 and stainless steel injectors for liquid rocket engines, Sp. Propuls. 2016 Proc. (2016). https://www.researchgate.net/publication/303331194.

  5. Y. Wang, W. Liu, D. Wang, C. Yu, J. Xu, H. Lu, and J. Chen, Simultaneously Enhanced Strength and Ductility of TIG Welds in Inconel 718 Super-Alloy Via Ultrasonic Pulse Current, Mater. Sci. Eng. A, 2021, 807, p 140894. https://doi.org/10.1016/j.msea.2021.140894

    Article  CAS  Google Scholar 

  6. S. Hu, H. Finklea and X. Liu, A Review on Molten Sulfate Salts Induced Hot Corrosion, J. Mater. Sci. Technol., 2021, 90, p 243–254. https://doi.org/10.1016/j.jmst.2021.03.013

    Article  CAS  Google Scholar 

  7. Y. Le Guével, B. Grégoire, M.J. Cristóbal, X. Feaugas, A. Oudriss, and F. Pedraza, Dissolution and Passivation of Aluminide Coatings on Model and Ni-Based Superalloy, Surf. Coat. Technol., 2019, 357, p 1037–1047. https://doi.org/10.1016/j.surfcoat.2018.10.090

    Article  CAS  Google Scholar 

  8. L. Liu, Y. Li, and F. Wang, Electrochemical Corrosion Behavior of Nanocrystalline Materials-A Review, J. Mater. Sci. Technol., 2010, 26, p 1–14. https://doi.org/10.1016/S1005-0302(10)60001-1

    Article  Google Scholar 

  9. C. Ma, C. Zhou, and J. Sun, Electrochemical Corrosion Behavior of the Cobalt Modified Aluminide Coating in 3.5 wt.% NaCl Solutions, Prog. Nat. Sci. Mater. Int., 2018, 28(1), p 85–89. https://doi.org/10.1016/j.pnsc.2018.01.009

    Article  CAS  Google Scholar 

  10. G.S. Mahobia, N. Paulose, and V. Singh, Hot Corrosion Behavior of Superalloy IN718 at 550 and 650 C, J. Mater. Eng. Perform., 2013, 22, p 2418–2435. https://doi.org/10.1007/s11665-013-0532-0

    Article  CAS  Google Scholar 

  11. R.A. Rapp, Hot Corrosion of Materials: A Fluxing Mechanism?, Corros. Sci., 2002, 44, p 209–221. https://doi.org/10.1016/S0010-938X(01)00057-9

    Article  CAS  Google Scholar 

  12. M. Wang, M. Song, G.S. Was, and J.L. Nelson, The Roles of Thermal Mechanical Treatment and δ Phase in the Stress Corrosion Cracking of Alloy 718 in Primary Water, Corros. Sci., 2019, 160, p 108168. https://doi.org/10.1016/j.corsci.2019.108168

    Article  CAS  Google Scholar 

  13. Y. Tang, X. Shen, Y. Qiao, L. Yang, J. Chen, D. Lu, and Z. Zhang, Corrosion Behavior of a Selective Laser Melted Inconel 718 Alloy in a 3.5 wt.% NaCl Solution, J. Mater. Eng. Perform., 2021, 30, p 5506–5514. https://doi.org/10.1007/s11665-021-05909-8

    Article  CAS  Google Scholar 

  14. L.N. Zhang and O.A. Ojo, Corrosion Behavior of Wire Arc Additive Manufactured Inconel 718 Superalloy, J. Alloys Compd., 2020, 829, p 154455. https://doi.org/10.1016/j.jallcom.2020.154455

    Article  CAS  Google Scholar 

  15. J.J. Li, Z. Zhao, P. Bai, H. Qu, B. Liu, L. Li, L. Wu, R. Guan, H. Liu, and Z. Guo, Microstructural Evolution and Mechanical Properties of IN718 Alloy Fabricated by Selective Laser Melting Following Different Heat Treatments, J. Alloys Compd., 2019, 30, p 1134–1143. https://doi.org/10.1016/j.addma.2019.100875

    Article  CAS  Google Scholar 

  16. B. Zhang, M. Xiu, Y.T. Tan, J. Wei, and P. Wang, Pitting Corrosion of SLM Inconel 718 Sample Under Surface and Heat Treatments, Appl. Surf. Sci., 2019, 490, p 556–567. https://doi.org/10.1016/j.apsusc.2019.06.043

    Article  CAS  Google Scholar 

  17. L.C.M. Valle, A.I.C. Santana, M.C. Rezende, J. Dille, O.R. Mattos, and L.H. de Almeida, The Influence of Heat Treatments on the Corrosion Behaviour of Nickel-Based Alloy 718, J. Alloys Compd., 2019, 809, p 151781. https://doi.org/10.1016/j.jallcom.2019.151781

    Article  CAS  Google Scholar 

  18. M. Amirjan, M. Bozorg, and H. Sakiani, Investigation of Microstructure and Corrosion Behavior of IN718 Superalloy Fabricated by Selective Laser Melting, Mater. Chem. Phys., 2021, 263, p 124368. https://doi.org/10.1016/j.matchemphys.2021.124368

    Article  CAS  Google Scholar 

  19. X. You, Y. Tan, L. Zhao, Q. You, Y. Wang, F. Ye, and J. Li, Effect of Solution Heat Treatment on Microstructure and Electrochemical Behavior of Electron Beam Smelted Inconel 718 Superalloy, J. Alloys Compd., 2018, 741, p 792–803. https://doi.org/10.1016/j.jallcom.2018.01.159

    Article  CAS  Google Scholar 

  20. S. Luo, W. Huang, H. Yang, J. Yang, Z. Wang, and X. Zeng, Microstructural Evolution and Corrosion Behaviors of Inconel 718 Alloy Produced by Selective Laser Melting Following Different Heat Treatments, Addit. Manuf., 2019, 30, p 100875. https://doi.org/10.1016/j.addma.2019.100875

    Article  CAS  Google Scholar 

  21. X. Liu, Z. Liu, L. Zhang, Q. Zhao, and Q. Jiang, Increased Tensile Strength and Elongation of the Ni-Fe Based Polycrystalline Cast Superalloy Via the Trace Addition of TiC Nanoparticles, Mater. Sci. Eng. A, 2021, 827, p 141988. https://doi.org/10.1016/j.msea.2021.141988

    Article  CAS  Google Scholar 

  22. R. Geng, S.Q. Jia, F. Qiu, Q.L. Zhao, and Q.C. Jiang, Effects of Nanosized TiC and TiB2 Particles on the Corrosion Behavior of Al-Mg-Si Alloy, Corros. Sci., 2020, 167, p 108479. https://doi.org/10.1016/j.corsci.2020.108479

    Article  CAS  Google Scholar 

  23. W.S. Tian, Q.L. Zhao, Q.Q. Zhang, F. Qiu, and Q.C. Jiang, Enhanced Strength and Ductility at Room and Elevated Temperatures of Al-Cu Alloy Matrix Composites Reinforced with Bimodal-Sized TiCp Compared with Monomodal–Sized TiCp, Mater. Sci. Eng. A, 2018, 724, p 368–375. https://doi.org/10.1016/j.msea.2018.03.106

    Article  CAS  Google Scholar 

  24. O. Golenishcheva, M. Oechsner, A. Aghajani, G. Andersohn, J. Kloewer, Influence of Delta-phase Precipitation on the Pitting Performance of UNS (N07718), Corros. 2014. (2014) NACE-2014-3895.

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Grant No. 51790483).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Zhang, L., Liu, X. et al. Nanoparticle Additions Improve the Corrosion Performance of Ni-Cr-Fe-Based Cast Superalloys. J. of Materi Eng and Perform 32, 8154–8161 (2023). https://doi.org/10.1007/s11665-022-07710-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07710-7

Keywords

Navigation