Skip to main content

Advertisement

Log in

On Mechanical, Physical, and Bioactivity Characteristics of Material Extrusion Printed Polyether Ether Ketone

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

High-performance polyether ether ketone (PEEK) thermoplastic is considered to be one of the most desirable materials for its intended biomedical implications, including oral implantology, prosthodontics, dental implants, and orthopaedics. Therefore, the processing of PEEK through material extrusion (ME) as a 3D printing process has been preferred due to its affordability, better process parameters, and mass customization. In the present study, attempts have been made to study the effects of various input process parameters of an in-house modified ME system on tensile strength, surface finish, and bioactivity. Underlining the scientific importance of input process parameters of ME, including nozzle temperature (Nt), printing speed (Ps), layer thickness (Lt), and build-platform temperature (Bt), their effects on the aforementioned characteristics of 3D printed PEEK specimens have been studied through employing Taguchi’s statistical analysis. The in-vitro cell viability test has been performed using Sprague–Dawley rat bone marrow-derived cells for 21 days. In addition to this, Scanning electron microscopic analysis has also been performed at various stages of this experimental study for supporting micro-characterization. This study indicated that the selected input process parameters strongly influence the tensile strength and surface finish of the as-printed specimens. The optimized print setting advised by the genetic algorithm (GA) included: Nt-440 °C, Ps-10 mm/min, Lt-0.1 mm, and Bt-270 °C. Further, the in-vitro results confirmed the bioactivity of the printed PEEK specimens with the tendency of cell viability. The novelty of the work is to develop a statistical model between ME parameters for PEEK between surface finish and tensile strength and to verify the bioactivity of the printed parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Parker, J. Bussink, H.T. van de Grampel, G.W. Wheatley, E.U. Dorf, E. Ostlinning, K. Reinking, F. Schubert, O. Jünger, Polymers, High‐Temperature. Ullmann's Encyclopedia of Industrial Chemistry, 2000.

  2. S. Xiaoyong, C. Liangcheng, M. Honglin, G. Peng, B. Zhanwei, L. Cheng, Experimental Analysis of High Temperature PEEK Materials on 3D Printing Test. In 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), 2017 (pp. 13–16). IEEE

  3. C. Basgul, D.W. MacDonald, R. Siskey, and S.M. Kurtz, Thermal localization Improves the Interlayer Adhesion and Structural Integrity of 3D Printed PEEK Lumbar Spinal Cages, Materialia., 2020, 1(10), p 100650.

    Article  Google Scholar 

  4. P. Patel, T.R. Hull, R.W. McCabe, D. Flath, J. Grasmeder, and M. Percy, Mechanism of Thermal Decomposition of Poly(ether ether ketone)(PEEK) from A Review of Decomposition Studies, Polym. Degrad. Stab., 2010, 95(5), p 709–718.

    Article  CAS  Google Scholar 

  5. I.V. Panayotov, V. Orti, F. Cuisinier, and J. Yachouh, Polyetheretherketone (PEEK) for Medical Applications, J. Mater. Sci. - Mater. Med., 2016, 27(7), p 1–1.

    Article  CAS  Google Scholar 

  6. M. Vaezi and S. Yang, Extrusion-Based Additive Manufacturing of PEEK for Biomedical Applications, Virtual Phys. Prototyp., 2015, 10(3), p 123–135.

    Article  Google Scholar 

  7. S. Najeeb, M.S. Zafar, Z. Khurshid, and F. Siddiqui, Applications of Polyetheretherketone (PEEK) in Oral Implantology and Prosthodontics, J. Prosthodont. Res., 2016, 60(1), p 12–19.

    Article  Google Scholar 

  8. J.P. Davim, P. Reis, V. Lapa, and C.C. António, Machinability Study on Polyetheretherketone (PEEK) Unreinforced and Reinforced (GF30) for Applications in Structural Components, Compos. Struct., 2003, 62(1), p 67–73.

    Article  Google Scholar 

  9. F. Rahmitasari, Y. Ishida, K. Kurahashi, T. Matsuda, M. Watanabe, and T. Ichikawa, PEEK with Reinforced Materials and Modifications for Dental Implant Applications, Dent. J., 2017, 5(4), p 35.

    Article  Google Scholar 

  10. X. Han, D. Yang, C. Yang, S. Spintzyk, L. Scheideler, P. Li, D. Li, J. Geis-Gerstorfer, and F. Rupp, Carbon Fiber Reinforced PEEK Composites Based on 3D-Printing Technology for Orthopedic and Dental Applications, J. Clin. Med., 2019, 8(2), p 240.

    Article  CAS  Google Scholar 

  11. P. Honigmann, N. Sharma, B. Okolo, U. Popp, B. Msallem, and F.M. Thieringer, Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application, Biomed. Res. Int., 2018, 19, p 2018.

    Google Scholar 

  12. F. Alam, K.M. Varadarajan, J.H. Koo, B.L. Wardle, and S. Kumar, Additively Manufactured Polyetheretherketone (PEEK) with Carbon Nanostructure Reinforcement for Biomedical Structural Applications, Adv. Eng. Mater., 2020, 22(10), p 2000483.

    Article  CAS  Google Scholar 

  13. X. Han, N. Sharma, Z. Xu, L. Scheideler, J. Geis-Gerstorfer, F. Rupp, F.M. Thieringer, and S. Spintzyk, An In Vitro Study of Osteoblast Response on Fused-Filament Fabrication 3D Printed PEEK for Dental and Cranio-Maxillofacial Implants, J. Clin. Med., 2019, 8(6), p 771.

    Article  CAS  Google Scholar 

  14. FM. Thieringer, N. Sharma, A. Mootien, R. Schumacher, P. Honigmann, Patient specific implants from a 3D printer–an innovative manufacturing process for custom PEEK implants in cranio-maxillofacial surgery. InInternational Conference on Additive Manufacturing in Products and Applications, 2017 Sep 13 (pp. 308-315). Springer, Cham

  15. N. Sharma, S. Aghlmandi, S. Cao, C. Kunz, P. Honigmann, and F.M. Thieringer, Quality Characteristics and Clinical Relevance of in-House 3D-Printed Customized Polyetheretherketone (PEEK) Implants for Craniofacial Reconstruction, J. Clin. Med., 2020, 9(9), p 2818.

    Article  Google Scholar 

  16. H. Spece, T. Yu, A.W. Law, M. Marcolongo, and S.M. Kurtz, 3D Printed Porous PEEK Created via Fused Filament Fabrication for Osteoconductive Orthopaedic Surfaces, J. Mech. Behav. Biomed. Mater., 2020, 1(109), p 103850.

    Article  Google Scholar 

  17. M.F. Arif, H. Alhashmi, K.M. Varadarajan, J.H. Koo, A.J. Hart, and S. Kumar, Multifunctional Performance of Carbon Nanotubes and Graphene Nanoplatelets Reinforced PEEK Composites Enabled via FFF Additive Manufacturing, Compos. B Eng., 2020, 1(184), p 107625.

    Article  Google Scholar 

  18. K. Park, G. Kim, H. No, H.W. Jeon, and G.E. Kremer, Identification of Optimal Process Parameter Settings Based on Manufacturing Performance for Fused Filament Fabrication of CFR-PEEK, Appl. Sci., 2020, 10(13), p 4630.

    Article  CAS  Google Scholar 

  19. M.F. Arif, S. Kumar, K.M. Varadarajan, and W.J. Cantwell, Performance of Biocompatible PEEK Processed by Fused Deposition Additive Manufacturing, Mater. Des., 2018, 15(146), p 249–259.

    Article  Google Scholar 

  20. G. Kaur, R.M. Singari, and H. Kumar, A Review of Fused Filament Fabrication (FFF): Process Parameters and their Impact on the Tribological Behavior of Polymers (ABS), Mater. Today: Proc., 2022, 51, p 854–860. https://doi.org/10.1016/j.matpr.2021.06.274

    Article  CAS  Google Scholar 

  21. Y. Wang, W.D. Müller, A. Rumjahn, F. Schmidt, and A.D. Schwitalla, Mechanical Properties of Fused Filament Fabricated PEEK for Biomedical Applications Depending on Additive Manufacturing Parameters, J. Mech. Behav. Biomed. Mater., 2021, 1(115), p 104250.

    Article  Google Scholar 

  22. C. Yang, X. Tian, D. Li, Y. Cao, F. Zhao, and C. Shi, Influence of Thermal Processing Conditions in 3D Printing on the Crystallinity and Mechanical Properties of PEEK Material, J. Mater. Process. Technol., 2017, 1(248), p 1–7.

    Article  CAS  Google Scholar 

  23. Y. Zhao, K. Zhao, Y. Li, and F. Chen, Mechanical Characterization of Biocompatible PEEK by FDM, J. Manuf. Process., 2020, 1(56), p 28–42.

    Article  Google Scholar 

  24. S. Berretta, R. Davies, Y.T. Shyng, Y. Wang, and O. Ghita, Fused Deposition Modelling of High Temperature Polymers: Exploring CNT PEEK Composites, Polym. Testing, 2017, 1(63), p 251–262.

    Article  Google Scholar 

  25. W.A. Peng, Z.O. Bin, D.I. Shouling, L.I. Lei, and C. Huang, Effects of FDM-3D Printing Parameters on Mechanical Properties and Microstructure of CF/PEEK and GF/PEEK, Chin. J. Aeronaut., 2021, 34(9), p 236–246.

    Article  Google Scholar 

  26. S. Ding, B. Zou, P. Wang, and H. Ding, Effects of Nozzle Temperature and Building Orientation on Mechanical Properties and Microstructure of PEEK and PEI Printed by 3D-FDM, Polym. Testing, 2019, 1(78), p 105948.

    Article  Google Scholar 

  27. E.R. Ghomi, S.K. Eshkalak, S. Singh, A. Chinnappan, S. Ramakrishna, and R. Narayan, Fused Filament Printing of Specialized Biomedical Devices: a State-of-the Art Review of Technological Feasibilities with PEEK, Rapid Prototyping J., 2021. https://doi.org/10.1108/RPJ-06-2020-0139

    Article  Google Scholar 

  28. L. Liu, T. Zhang, C. Li, G. Jiang, F. Wang, and L. Wang, Regulating Surface Roughness of Electrospun Poly (ε-caprolactone)/β-Tricalcium Phosphate Fibers for Enhancing Bone Tissue Regeneration, Eur. Polymer J., 2021, 143, p 110201.

    Article  CAS  Google Scholar 

  29. E. Choi, S. Bae, D. Kim, G.H. Yang, K. Lee, H.J. You, H.J. Kang, S.J. Gwak, S. An, and H. Jeon, Characterization and Intracellular Mechanism of Electrospun Poly (ε-caprolactone)(PCL) Fibers Incorporated with bone-dECM Powder as a Potential Membrane for Guided Bone Regeneration, J. Ind. Eng. Chem., 2021, 94, p 282–291.

    Article  CAS  Google Scholar 

  30. B. Jahani and X. Wang, The Effects of Surface Roughness on the Functionality of Ti13Nb13Zr Orthopedic Implants, Biomed. J. Sci. Tech. Res., 2021, 38(1), p 30058–30067.

    Google Scholar 

  31. P. Kumar, D.K. Rajak, M. Abubakar, S.G. Ali, and M. Hussain, 3D Printing Technology for Biomedical Practice: A Review, J. Mater. Eng. Perform., 2021, 30(7), p 5342–5355.

    Article  CAS  Google Scholar 

  32. H. Dou, W. Ye, D. Zhang, Y. Cheng, and Y. Tian, Compression Performance with Different Build Orientation of Fused Filament Fabrication Polylactic Acid, Acrylonitrile Butadiene Styrene, and Polyether Ether Ketone, J. Mater. Eng. Perform., 2021, 25, p 1–9.

    Google Scholar 

  33. F. Manzoor, A. Golbang, S. Jindal, D. Dixon, A. McIlhagger, E. Harkin-Jones, D. Crawford, and E. Mancuso, 3D Printed PEEK/HA Composites for Bone Tissue Engineering Applications: Effect of Material Formulation on Mechanical Performance and Bioactive Potential, J. Mech. Behav. Biomed. Mater., 2021, 1(121), p 104601.

    Article  Google Scholar 

  34. R.A. García-León, J.A. Gómez-Camperos, and H.Y. Jaramillo, Scientometric Review of Trends on the Mechanical Properties of Additive Manufacturing and 3D Printing, J. Mater. Eng. Perform., 2021, 30(7), p 4724–4734.

    Article  Google Scholar 

  35. M. Vignesh, G. Ranjith Kumar, M. Sathishkumar, M. Manikandan, G. Rajyalakshmi, R. Ramanujam, and N. Arivazhagan, Development of biomedical implants through additive manufacturing: A review, J. Mater. Eng. Perform., 2021, 30(7), p 4735–4744.

    Article  CAS  Google Scholar 

  36. K. Babu, O. Das, V. Shanmugam, R.A. Mensah, M. Försth, G. Sas, Á. Restás, and F. Berto, Fire Behavior of 3D-Printed Polymeric Composites, J. Mater. Eng. Perform., 2021, 30(7), p 4745–4755.

    Article  CAS  Google Scholar 

  37. PEEK (Polyether ether ketone) filament, https://www.3d4makers.com/products/peek-filament, retrieved on 15th Aug 2021.

  38. S. Kamaruddin, Z.A. Khan, and S.H. Foong, Application of Taguchi Method in the Optimization of Injection Moulding Parameters for Manufacturing Products from Plastic Blend, Int. J. Eng. Technol., 2010, 2(6), p 574.

    Article  Google Scholar 

  39. K Menderes, A İpekçi, and Ö Şengül. Investigation of the Effect of FDM Process Parameters on Mechanical Properties of 3D Printed PA12 Samples Using Taguchi Method. J. Thermoplast. Compos. Mater., 2021, 08927057211006459.

  40. G. Singh, S. Singh, C. Prakash, and S. Ramakrishna, On Investigating the soda-Lime Shot Blasting of AZ31 Alloy: Effects on Surface Roughness, Material Removal Rate, Corrosion Resistance, and Bioactivity, J. Magnes. Alloys, 2021, 9(4), p 1272–1284.

    Article  CAS  Google Scholar 

  41. C.G. Williams, T.K. Kim, A. Taboas, A. Malik, P. Manson, and J. Elisseeff, In Vitro Chondrogenesis of Bone Marrow-Derived Mesenchymal Stem Cells in a Photopolymerizing Hydrogel, Tissue Eng, 2003, 9(4), p 679–688. https://doi.org/10.1089/107632703768247377

    Article  CAS  Google Scholar 

  42. E. Yu, L. Wu, Y. Liu, J. Li, B. Ma, Y. Li, Y. Zh Hu, H.W. He, W. Zh, and G. Qiu, 3D Culture of Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) Could Improve Bone Regeneration in 3D-Printed Porous Ti6Al4V Scaffolds, Stem Cells Int, 2018, 2018, p 1–13. https://doi.org/10.1155/2018/2074021

    Article  CAS  Google Scholar 

  43. S. Xiaoyong, C. Liangcheng, M. Honglin, G. Peng, B. Zhanwei, L. Cheng. Experimental Analysis of High Temperature PEEK Materials on 3D Printing Test. In 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) 2017 (pp. 13–16). IEEE.

  44. B. Hu, X. Duan, Z. Xing, Z. Xu, C. Du, H. Zhou, R. Chen, and B. Shan, Improved Design of Fused Deposition Modeling Equipment for 3D Printing of High-Performance PEEK Parts, Mech. Mater., 2019, 1(137), p 103139.

    Article  Google Scholar 

  45. P. Wang, B. Zou, S. Ding, C. Huang, Z. Shi, Y. Ma, and P. Yao, Preparation of short CF/GF Reinforced PEEK Composite Filaments and their Comprehensive Properties Evaluation for FDM-3D Printing, Compos. B Eng., 2020, 1(198), p 108175.

    Article  Google Scholar 

  46. W. Wu, P. Geng, G. Li, D. Zhao, H. Zhang, and J. Zhao, Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical study between PEEK and ABS, Materials, 2015, 8(9), p 5834–5846.

    Article  CAS  Google Scholar 

  47. Y. Li and Y. Lou, Tensile and Bending Strength Improvements in Peek Parts Using Fused Deposition Modelling 3d Printing Considering multi-Factor Coupling, Polymers, 2020, 12(11), p 2497.

    Article  CAS  Google Scholar 

  48. A. Nevarez-Rascon, S. González-Lopez, L.S. Acosta-Torres, M.M. Nevarez-Rascon, and E. Orrantia-Borunda, Synthesis, Biocompatibility and Mechanical Properties of ZrO2-Al2O3 Ceramics Composites, Dent. Mater. J., 2016, 35(3), p 392–398.

    Article  CAS  Google Scholar 

  49. S. Kouser, S. Sheik, A. Prabhu, G.K. Nagaraja, K. Prashantha, J.N. D’souza, M.K. Navada, and D.J. Manasa, Effects of Reinforcement of Sodium Alginate Functionalized halloysite Clay Nanotubes on Thermo-Mechanical Properties and Biocompatibility of Poly (vinyl alcohol) Nanocomposites, J. Mech. Behav. Biomed. Mater., 2021, 1(118), p 104441.

    Article  Google Scholar 

  50. Y.H. Kim, M.A. Jyoti, and H.Y. Song, Immobilization of Cross Linked Col-I–OPN Bone Matrix Protein on aminolysed PCL Surfaces Enhances Initial Biocompatibility of Human Adipogenic Mesenchymal Stem Cells (hADMSC), Appl. Surf. Sci., 2014, 1(303), p 97–106.

    Article  Google Scholar 

  51. J. Kim, H.M. Mousa, C.H. Park, and C.S. Kim, Enhanced Corrosion Resistance and Biocompatibility of AZ31 Mg Alloy using PCL/ZnO NPs via Electrospinning, Appl. Surf. Sci., 2017, 28(396), p 249–258.

    Article  Google Scholar 

  52. F. Manzoor, A. Golbang, S. Jindal, D. Dixon, A. McIlhagger, E. Harkin-Jones et al., 3D Printed PEEK/HA Composites for Bone Tissue Engineering applications: Effect of Material Formulation on Mechanical Performance and Bioactive Potential, J. Mech. Behav. Biomed. Mater., 2021, 121, p 104601. https://doi.org/10.1016/j.jmbbm.2021.104601

    Article  CAS  Google Scholar 

  53. M.A. Ur Rehman, S. Ferraris, W.H. Goldmann, S. Perero, F.E. Bastan, Q. Nawaz, G.G. Di Confiengo, M. Ferraris, and A.R. Boccaccini, Antibacterial and Bioactive Coatings Based on Radio Frequency Co-Sputtering of Silver Nanocluster-Silica Coatings on PEEK/Bioactive Glass Layers Obtained by Electrophoretic Deposition, ACS Appl. Mater. Interfaces, 2017, 9, p 32489–32497.

    Article  CAS  Google Scholar 

  54. Q. Nawaz, S. Fastner, M.A.U. Rehman, S. Ferraris, S. Perero, G.G. Di Confiengo, E. Yavuz, M. Ferraris, and A.R. Boccaccini, Multifunctional Stratified Composite Coatings by Electrophoretic Deposition and RF Co-Sputtering for Orthopaedic Implants, J. Mater. Sci., 2021, 56, p 7920–7935.

    Article  CAS  Google Scholar 

  55. K. Przykaza, M. Jurak, A.E. Wiącek, and R. Mroczka, Characteristics of Hybrid Chitosan/Phospholipid-Sterol, Peptide Coatings on Plasma Activated PEEK Polymer, Mater. Sci. Eng.: C, 2021, 120, p 111658. https://doi.org/10.1016/j.msec.2020.111658

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to the Center for Manufacturing Research, Guru Nanak Dev Engineering College, Ludhiana, India, and the Department of Mechanical Engineering, the National University of Singapore for technical assistance in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranvijay Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Singh, G., Chinappan, A. et al. On Mechanical, Physical, and Bioactivity Characteristics of Material Extrusion Printed Polyether Ether Ketone. J. of Materi Eng and Perform 32, 5885–5894 (2023). https://doi.org/10.1007/s11665-022-07519-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07519-4

Keywords

Navigation