Skip to main content
Log in

Characterization of Anisotropic Fracture Behavior of 7075-T6 Aluminum Alloy Sheet under Various Stress States

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The anisotropic fracture of the 7075-T6 aluminum alloy sheet was investigated under various stress states. Tensile tests using specimens with various shapes were conducted along different loading directions to understand the anisotropic fracture behavior of the 7075-T6 sheet over a wide range of stress states. The failure strains as a function of loading directions and stress state were evaluated using the digital image correlation (DIC) technique. The fracture morphology was observed at the macroscale and microscopic to probe the failure model and fracture mechanisms of the 7075-T6 aluminum alloy sheet. The anisotropic fracture behavior of the alloy was described using a DF2016-based anisotropic fracture model. Meanwhile, the effect of plastic anisotropy on the formability of the 7075-T6 sheet was examined using both quadratic and non-quadratic yield functions. The constructed anisotropic fracture loci, fracture envelopes, and fracture forming limit diagrams reasonably characterized the anisotropic fracture behavior of the 7075-T6 sheet over a wide range of loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. K. Fang, C. Li, Y. Tang, J. He and J. Song, China’s Pathways to Peak Carbon Emissions: New Insights from Various Industrial Sectors, Appl. Energy, 2022, 306, p 118039.

    Article  Google Scholar 

  2. K.S. Pandya, C.C. Roth and D. Mohr, Strain Rate and Temperature Dependent Fracture of Aluminum Alloy 7075: Experiments and Neural Network Modeling, Int. J. Plast., 2020, 135, p 102788.

    Article  CAS  Google Scholar 

  3. Y. Choi, J. Lee, S.S. Panicker, H.K. Jin, S.K. Panda and M.G. Lee, Mechanical Properties, Springback, and Formability of W-temper and Peak Aged 7075 Aluminum Alloy Sheets: Experiments and Modeling, Int. J. Mech. Sci., 2020, 170, p 105344.

    Article  Google Scholar 

  4. A. Mehri, A. Abdollah-zadeh, N. Habibi, M. Hajian and J.T. Wang, The Effects of Rotational Speed on Microstructure and Mechanical Properties of Friction Stir-Welded 7075–T6 Thin Sheet, J. Mater. Eng. Perform., 2020, 29(4), p 2316–2323.

    Article  CAS  Google Scholar 

  5. M. Fourmeau, T. Borvik, A. Benallal and O.S. Hopperstad, Anisotropic Failure Modes of High-Strength Aluminium Alloy under Various Stress States, Int. J. Plast., 2013, 48, p 34–53.

    Article  CAS  Google Scholar 

  6. S.S. Singh, C. Schwartzstein, J.J. Williams, X. Xiao, F. De Carlo and N. Chawla, 3D Microstructural Characterization and Mechanical Properties of Constituent Particles in Al 7075 Alloys using X-ray Synchrotron Tomography and Nanoindentation, J. Alloys Compd., 2014, 602, p 163–174.

    Article  CAS  Google Scholar 

  7. L. Ying, T.H. Gao, H. Rong, X. Han, P. Hu and W.B. Hou, On the Thermal Forming Limit Diagram (TFLD) with GTN Mesoscopic Damage Model for AA7075 Aluminum Alloy: Numerical and Experimental Investigation, J. Alloys Compd., 2019, 802, p 675–693.

    Article  CAS  Google Scholar 

  8. J. Lee, J. Ha, H.J. Bong, D. Kim and M.-G. Lee, Evolutionary Anisotropy and Flow Stress in Advanced High Strength Steels under Loading Path Changes, Mater. Sci. Eng., A, 2016, 672, p 65–77.

    Article  CAS  Google Scholar 

  9. J.W. Yoon, R.E. Dick and F. Barlat, A New Analytical Theory for Earing Generated from Anisotropic Plasticity, Int. J. Plast., 2011, 27(8), p 1165–1184.

    Article  CAS  Google Scholar 

  10. K. Cao, Z.-M. Yue, X.-D. Zhao, J. Qi and J. Gao, Hybrid Inverse Parameter Identification of Fully Coupled Ductile Damage Model for Steel Sheet DP600 with Two Different Algorithms: Trust Region and Genetic Algorithms, J. Mater. Eng. Perform., 2019, 28(5), p 3149–3156.

    Article  CAS  Google Scholar 

  11. S. Thomesen, O.S. Hopperstad, O.R. Myhr and T. Borvik, Influence of Stress State on Plastic Flow and Ductile Fracture of Three 6000-Series Aluminium Alloys, Mater. Sci. Eng., A, 2020, 783, p 139295.

    Article  CAS  Google Scholar 

  12. A.J. Tomstad, S. Thomesen, T. Børvik and O.S. Hopperstad, Effects of Constituent Particle Content on Ductile Fracture in Isotropic and Anisotropic 6000-Series Aluminium Alloys, Mater. Sci. Eng., A, 2021, 820, p 141420.

    Article  CAS  Google Scholar 

  13. X. Wei, X. Zhang, M. Cai, Z. Peng, Y. Liu, C. Lian, H. Peng and P. Hodgson, Stress-State-Dependent Deformation and Fracture Behaviors in a Cold-Rolled 7Mn Steel, Mater. Sci. Eng.: A, 2021, 831, p 142102.

    Article  Google Scholar 

  14. R. Zhao, S. Zhao, J. Guo, B. Zhong and J. Li, Experimental and Numerical Investigation on Ductile Fracture Mechanism of Aluminium Alloy using New Modified Model, Mater. Sci. Technol., 2015, 31(3), p 303–309.

    Article  CAS  Google Scholar 

  15. Y.B. Bao and T. Wierzbicki, On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space, Int. J. Mech. Sci., 2004, 46(1), p 81–98.

    Article  Google Scholar 

  16. I. Barsoum and J. Faleskog, Rupture Mechanisms in Combined Tension and Shear—Experiments, Int. J. Solids Struct., 2007, 44(6), p 1768–1786.

    Article  CAS  Google Scholar 

  17. J. Faleskog and I. Barsoum, Tension-Torsion Fracture Experiments-Part I: Experiments and a Procedure to Evaluate the Equivalent Plastic Strain, Int. J. Solids Struct., 2013, 50(25–26), p 4241–4257.

    Article  CAS  Google Scholar 

  18. J. Papasidero, V. Doquet and D. Mohr, Ductile Fracture of Aluminum 2024–T351 under Proportional and Non-Proportional Multi-Axial Loading: Bao-Wierzbicki Results Revisited, Int. J. Solids Struct., 2015, 69–70, p 459–474.

    Article  Google Scholar 

  19. A. Ghahremaninezhad and K. Ravi-Chandar, Ductile Failure Behavior of Polycrystalline Al 6061–T6 under Shear Dominant Loading, Int. J. Fract., 2013, 180(1), p 23–39.

    Article  CAS  Google Scholar 

  20. S.S. Haltom, S. Kyriakides and K. Ravi-Chandar, Ductile Failure under Combined Shear and Tension, Int. J. Solids Struct., 2013, 50(10), p 1507–1522.

    Article  CAS  Google Scholar 

  21. M. Scales, N. Tardif and S. Kyriakides, Ductile Failure of Aluminum Alloy Tubes under Combined Torsion and Tension, Int. J. Solids Struct., 2016, 97–98, p 116–128.

    Article  Google Scholar 

  22. M. Scales, K. Chen and S. Kyriakides, Material Response, Localization, and Failure of an Aluminum Alloy under Combined Shear and Tension: Part I Experiments, Int. J. Plast., 2019, 120, p 340–360.

    Article  CAS  Google Scholar 

  23. C.P. You, A.W. Thompson and I.M. Bernstein, Ductile Fracture Processes in 7075 Aluminum, Metall. Mater. Trans. A., 1995, 26(2), p 407–415.

    Article  Google Scholar 

  24. A.M. Beese, M. Luo, Y.N. Li, Y.L. Bai and T. Wierzbicki, Partially Coupled Anisotropic Fracture Model for Aluminum Sheets, Eng. Fract. Mech., 2010, 77(7), p 1128–1152.

    Article  Google Scholar 

  25. M.B. Gorji and D. Mohr, Predicting Shear Fracture of Aluminum 6016–T4 during Deep Drawing: Combining Yld-2000 Plasticity with Hosford Coulomb Fracture Model, Int. J. Mech. Sci., 2018, 137, p 105–120.

    Article  Google Scholar 

  26. B. Gu, J. He, S.H. Li and Z.Q. Lin, Anisotropic Fracture Modeling of Sheet Metals: From In-plane to Out-of-plane, Int. J. Solids Struct., 2020, 182, p 112–140.

    Article  Google Scholar 

  27. Y.Q. Jia and Y.L. Bai, Ductile Fracture Prediction for Metal Sheets using all-Strain-Based Anisotropic eMMC Model, Int. J. Mech. Sci., 2016, 115, p 516–531.

    Article  Google Scholar 

  28. B.T. Tang, Q.F. Wang, N. Guo, X.S. Li, Q.L. Wang, A. Ghiotti, S. Bruschi and Z.G. Luo, Modeling Anisotropic Ductile Fracture Behavior of Ti-6Al-4V Titanium Alloy for Sheet Forming Applications at Room Temperature, Int. J. Solids Struct., 2020, 207, p 178–195.

    Article  CAS  Google Scholar 

  29. Y.S. Lou and J.W. Yoon, Alternative Approach to Model Ductile Fracture by Incorporating Anisotropic Yield Function, Int. J. Solids Struct., 2019, 164, p 12–24.

    Article  CAS  Google Scholar 

  30. N. Park, T.B. Stoughton and J.W. Yoon, A New Approach for Fracture Prediction Considering General Anisotropy of Metal Sheets, Int. J. Plast., 2020, 124, p 199–225.

    Article  Google Scholar 

  31. N. Park, H. Huh, S.J. Lim, Y.S. Lou, Y.S. Kang and M.H. Seo, Fracture-based Forming Limit Criteria for Anisotropic Materials in Sheet Metal Forming, Int. J. Plast., 2017, 96, p 1–35.

    Article  Google Scholar 

  32. K. Ju, F.H. Zhu, X.F. Li, Q. Hu and J. Chen, Development of Uncoupled Anisotropic Ductile Fracture Criteria, J. Mater. Eng. Perform., 2020, 29(2), p 1282–1295.

    Article  CAS  Google Scholar 

  33. L. Dong, S.H. Li and J. He, Ductile Fracture Initiation of Anisotropic Metal Sheets, J. Mater. Eng. Perform., 2017, 26(7), p 3285–3298.

    Article  CAS  Google Scholar 

  34. M. Luo, M. Dunand and D. Mohr, Experiments and Modeling of Anisotropic Aluminum Extrusions under Multi-axial Loading - Part II: Ductile Fracture, Int. J. Plast., 2012, 32–33, p 36–58.

    Article  Google Scholar 

  35. Y.S. Lou and J.W. Yoon, Anisotropic Ductile Fracture Criterion based on Linear Transformation, Int. J. Plast., 2017, 93, p 3–25.

    Article  CAS  Google Scholar 

  36. J. Cao, F.G. Li, X.K. Ma and Z.K. Sun, Study of Fracture Behavior for Anisotropic 7050–T7451 High-strength Aluminum Alloy Plate, Int. J. Mech. Sci., 2017, 128, p 445–458.

    Article  Google Scholar 

  37. H. Quach and Y.-S. Kim, Effect of Non-associated Flow Rule on Fracture Prediction of Metal Sheets using a Novel Anisotropic Ductile Fracture Criterion, Int. J. Mech. Sci., 2021, 195, p 106224.

    Article  Google Scholar 

  38. T. Rahmaan, C. Butcher, S. Kim and M.J. Worswick, Characterization and Prediction of Fracture in 6000- and 7000-Series Aluminum Alloy Sheet under Various Stress States, Thin-Walled Struct., 2022, 173, p 108958.

    Article  Google Scholar 

  39. Y.S. Lou and J.W. Yoon, A User-friendly Anisotropic Ductile Fracture Criterion for Sheet Metal under Proportional Loading, Int. J. Solids Struct., 2021, 217, p 48–59.

    Article  Google Scholar 

  40. M. Fourmeau, C.D. Marioara, T. Borvik, A. Benallal and O.S. Hopperstad, A Study of the Influence of Precipitate-Free Zones on the Strain Localization and Failure of the Aluminium Alloy AA7075-T651, Philos. Mag., 2015, 95(28–30), p 3278–3304.

    Article  CAS  Google Scholar 

  41. M. Merklein, M. Biasutti, Forward and Reverse Simple Shear Test Experiments for Material Modeling in Forming Simulations. Proceedings of the 10th International Conference on Technology of Plasticity, ICTP, 2011, pp. 702–707

  42. Q. Yin, B. Zillmann, S. Suttner, G. Gerstein, M. Biasutti, A.E. Tekkaya, M.F.X. Wagner, M. Merklein, M. Schaper, T. Halle and A. Brosius, An Experimental and Numerical Investigation of Different Shear Test Configurations for Sheet Metal Characterization, Int. J. Solids Struct., 2014, 51(5), p 1066–1074.

    Article  Google Scholar 

  43. C.C. Roth, T. Fras and D. Mohr, Dynamic Perforation of Lightweight Armor: Temperature-dependent Plasticity and Fracture of Aluminum 7020–T6, Mech. Mater., 2020, 149, p 103537.

    Article  Google Scholar 

  44. C. Zhang, Y. Lou, S. Zhang, T. Clausmeyer, A.E. Tekkaya, L. Fu, Q. Chen and Q. Zhang, Large Strain Flow Curve Identification for Sheet Metals under Complex Stress States, Mech. Mater., 2021, 161, p 103997.

    Article  Google Scholar 

  45. I. Jang, G. Bae, J. Song, H. Kim and N. Park, Fracture Envelopes on the 3D-DIC and Hybrid Inverse Methods Considering Loading History, Mater. Des., 2020, 194, p 108934.

    Article  CAS  Google Scholar 

  46. C.C. Roth and D. Mohr, Ductile Fracture Experiments with Locally Proportional Loading Histories, Int. J. Plast., 2016, 79, p 328–354.

    Article  CAS  Google Scholar 

  47. M. Dunand and D. Mohr, Hybrid Experimental-Numerical Analysis of Basic Ductile Fracture Experiments for Sheet Metals, Int. J. Solids Struct., 2010, 47(9), p 1130–1143.

    Article  Google Scholar 

  48. Y.S. Lou, J.W. Yoon, H. Huh, Q. Chao and J.H. Song, Correlation of the Maximum Shear Stress with Micro-mechanisms of Ductile Fracture for Metals with High Strength-to-Weight Ratio, Int. J. Mech. Sci., 2018, 146, p 583–601.

    Article  Google Scholar 

  49. Y. Lou and H. Huh, Prediction of Ductile Fracture for Advanced High Strength Steel with a New Criterion: Experiments and Simulation, J. Mater. Process. Technol., 2013, 213(8), p 1284–1302.

    Article  CAS  Google Scholar 

  50. T. Rahmaan, A. Abedini, C. Butcher, N. Pathak and M.J. Worswick, Investigation into the Shear Stress, Localization and Fracture Behaviour of DP600 and AA5182-O Sheet Metal Alloys under Elevated Strain Rates, Int. J. Impact Eng., 2017, 108, p 303–321.

    Article  Google Scholar 

  51. T.F. Morgeneyer, M. Khadyko, A. Buljac, L. Helfen, F. Hild, A. Benallal, T. Børvik and O.S. Hopperstad, On Crystallographic Aspects of Heterogeneous Plastic Flow during Ductile Tearing: 3D Measurements and Crystal Plasticity Simulations for AA7075-T651, Int. J. Plast., 2021, 144, p 103028.

    Article  CAS  Google Scholar 

  52. J.W. Yoon, Y. Lou, J. Yoon and M.V. Glazoff, Asymmetric Yield Function based on the Stress Invariants for Pressure Sensitive Metals, Int. J. Plast., 2014, 56, p 184–202.

    Article  CAS  Google Scholar 

  53. T. Rahmaan, J. Noder, A. Abedini, P. Zhou, C. Butcher and M.J. Worswick, Anisotropic Plasticity Characterization of 6000- and 7000-Series Aluminum Sheet Alloys at Various Strain Rates, Int. J. Impact Eng., 2020, 135, p 103390.

    Article  Google Scholar 

  54. Y.S. Lou, S.J. Zhang and J.W. Yoon, Strength Modeling of Sheet Metals from Shear to Plane Strain Tension, Int. J. Plast., 2020, 134, p 102813.

    Article  CAS  Google Scholar 

  55. T. Børvik, O.S. Hopperstad and K.O. Pedersen, Quasi-Brittle Fracture during Structural Impact of AA7075-T651 Aluminium Plates, Int. J. Impact Eng., 2010, 37(5), p 537–551.

    Article  Google Scholar 

  56. A.E. Tekkaya, P.O. Bouchard, S. Bruschi and C.C. Tasan, Damage in Metal Forming, CIRP Ann., 2020, 69(2), p 600–623.

    Article  Google Scholar 

  57. A. Ditta, L. Wei, Y. Xu and S. Wu, Effect of Hot Extrusion and Optimal Solution Treatment on Microstructure and Properties of Spray-Formed Al-11.3Zn-2.65Mg-1Cu Alloy, J. Alloys Compd., 2019, 797, p 558–565.

    Article  CAS  Google Scholar 

  58. Y. Li, Y. Deng, S. Fan, X. Guo, K. Jiang, Z. Zhang and L. Sun, An In-Situ Study on the Dissolution of Intermetallic Compounds in the Al-Zn-Mg-Cu Alloy, J. Alloys Compd., 2020, 829, p 154612.

    Article  CAS  Google Scholar 

  59. Y. Xu, X. Zhuang, W. Zhang, Q. Li and Z. Zhao, Mechanical Behaviors and Microstructure Characteristics of W-Tempered and Peak-Aged 7075 Alloy Sheets under Low Frequency Vibration–Assisted Tension, Mater. Sci. Eng.: A, 2021, 833, p 142338.

    Article  Google Scholar 

  60. K.O. Pedersen, T. Børvik and O.S. Hopperstad, Fracture Mechanisms of Aluminium Alloy AA7075-T651 under Various Loading Conditions, Mater. Des., 2011, 32(1), p 97–107.

    Article  CAS  Google Scholar 

  61. N. Hosseini, J.C. Nieto-Fuentes, M. Dakshinamurthy, J.A. Rodríguez-Martínez and G. Vadillo, The Effect of Material Orientation on Void Growth, Int. J. Plast., 2022, 148, p 103149.

    Article  CAS  Google Scholar 

  62. Y. Lou, H. Huh, S. Lim and K. Pack, New ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals, Int. J. Solids Struct., 2012, 49(25), p 3605–3615.

    Article  CAS  Google Scholar 

  63. J.R. Rice and D.M. Tracey, On the Ductile Enlargement of Voids in Triaxial Stress Fields, J. Mech. Phys. Solids, 1969, 17(3), p 201–217.

    Article  Google Scholar 

  64. Y.L. Bai and T. Wierzbicki, Application of Extended Mohr-Coulomb Criterion to Ductile Fracture, Int. J. Fract., 2010, 161(1), p 1–20.

    Article  CAS  Google Scholar 

  65. Y.S. Lou, L. Chen, T. Clausmeyer, A.E. Tekkaya and J.W. Yoon, Modeling of Ductile Fracture from Shear to Balanced Biaxial Tension for Sheet Metals, Int. J. Solids Struct., 2017, 112, p 169–184.

    Article  CAS  Google Scholar 

  66. N. Park, H. Huh and J.W. Yoon, Anisotropic Fracture Forming Limit Diagram Considering Non-Directionality of the Equi-biaxial Fracture Strain, Int. J. Solids Struct., 2018, 151, p 181–194.

    Article  CAS  Google Scholar 

  67. R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. R. Soc. London Series A Math. Phys. Sci., 1948, 193(1033), p 281–297.

    CAS  Google Scholar 

  68. F. Barlat, D.J. Lege and J.C. Brem, A Six-Component Yield Function for Anisotropic Materials, Int. J. Plast., 1991, 7(7), p 693–712.

    Article  CAS  Google Scholar 

  69. F. Barlat, H. Aretz, J.W. Yoon, M.E. Karabin, J.C. Brem and R.E. Dick, Linear Transfomation-Based Anisotropic Yield Functions, Int. J. Plast., 2005, 21(5), p 1009–1039.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful for the support received from the National Natural Science Foundation of China (Grant No. 51275414, No. 51605387), the National Key Research and Development Program of China (Grant No. 2021YFB3400902), the Fundamental Research Funds for the Central Universities with Grant No. 3102015BJ (II) ZS007, the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China (Grant No. 130-QP-2015), and the Key Research and Development Program of Shaanxi Province (No. 2020ZDLGY12-07).

Author information

Authors and Affiliations

Authors

Contributions

TX was involved in conceptualization, data curation, investigation, software, visualization, writing—original draft, FL contributed to review and editing, supervision, XW was involved in investigation, data curation, visualization, and GZ contributed to resources.

Corresponding author

Correspondence to Fuguo Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Li, F., Wang, X. et al. Characterization of Anisotropic Fracture Behavior of 7075-T6 Aluminum Alloy Sheet under Various Stress States. J. of Materi Eng and Perform 32, 3230–3252 (2023). https://doi.org/10.1007/s11665-022-07327-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07327-w

Keywords

Navigation