Skip to main content
Log in

Structure-Dependent Corrosion Behavior of Electrodeposited Zn Coating

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, zinc (Zn) coating was developed on an interstitial-free (IF) steel from Zn sulfate bath using direct current (DC) and pulse current (PC) electrodeposition techniques at different current densities of 10, 30, and 60 mA/cm2. The x-ray diffraction (XRD) analysis of the coatings reveals that the higher atomically dense (0002) crystal plane of the pure Zn in the PC deposits is pronounced as compared to the DC deposits. The scanning electron microscopic (SEM) study displays finer and compact morphology of the PC deposits as compared to the DC deposits. The electrodeposits change from coarser to finer morphology with an increase in current density in both the electrodeposition techniques. All the PC deposits show a higher water contact angle (WCA) as compared to the DC deposits at each applied current density. The finer and compact coating morphology, higher WCA values with the dominance of a higher atomically dense (0002) crystal plane as well as the higher fraction of simonkolleite phase lead to the higher corrosion resistance of the PC deposits than the DC deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.R. Marder, The Metallurgy of Zinc-Coated Steel, Prog. Mater Sci., 2000, 45, p 191–271.

    Article  CAS  Google Scholar 

  2. S.M.A. Shibli, B.N. Meena, and R. Remya, A Review on Recent Approaches in the Field of Hot-Dip Zinc Galvanizing Process, Surf. Coat. Technol., 2015, 262, p 210–215.

    Article  CAS  Google Scholar 

  3. K.K. Maniam and S. Paul, Corrosion Performance of Electrodeposited Zn and Zn Alloy Coatings in Marine Environment, Corros. Mater. Degrad., 2021, 2, p 163–189.

    Article  Google Scholar 

  4. M.S. Chandrasekar and M. Pushpavanam, Pulse and Pulse Reverse Plating—Conceptual, Advantages and Applications, Electrochim. Acta, 2008, 53, p 3313–3322.

    Article  CAS  Google Scholar 

  5. C.A. Loto, Electrodeposition of Zn from Acid Based Solutions: A Review and Experimental Study, Asian J. Appl. Sci., 2012, 5(6), p 312–326.

    Article  Google Scholar 

  6. F.H. Assaf, S.S. Abd El Rehim, A.S. Mohamed, and A.M. Zaky, Electroplating of Brass from Citrate-Based Alloy Baths, Indian J. Chem. Technol., 1995, 2(3), p 147–152.

    CAS  Google Scholar 

  7. C.J. Chen and C.C. Wan, A Study of the Current Efficiency Decrease Accompanying Short Pulse Time for Pulse Plating, J. Electrochem. Sci., 1989, 136, p 2850–2855.

    Article  CAS  Google Scholar 

  8. K. Arunsunai Kumar, G. Paruthimal Kalaignan, and V.S. Murali Dharan, Direct and Pulse Current Electrodeposition of Ni–W–TiO2 Nano-Composite Coatings, Ceram. Int., 2013, 39, p 2827–2834.

    Article  CAS  Google Scholar 

  9. T.M. Al-Dhire, H. Zuhailawati, and A.S. Anasyida, Effect of Current Density on Corrosion and Mechanical Properties of Zn-SiC Composite Coating, Mater. Today: Proc., 2019, 17, p 664–671.

    CAS  Google Scholar 

  10. J.C. Scully, The Fundamentals of Corrosion, 2 edn (Pergamon Press, Oxford, 1990)

  11. H.S. Maharana, P.K. Katiyar, and K. Mondal, Structure Dependent Super-Hydrophobic and Corrosion Resistant Behavior of Electrodeposited Ni-MoSe2-MWCNT Coating, Appl. Surf. Sci., 2019, 478, p 26–37.

    Article  CAS  Google Scholar 

  12. C. Li, R. Ma, Y. Du An, X. Fan, and X. Cao. Zhao, One-Step Fabrication of Bionic Superhydrophobic Coating on Galvanized Steel with Excellent Corrosion Resistance, J. Alloys Compd., 2019, 786, p 272–283.

    Article  CAS  Google Scholar 

  13. T. Darmanin, E.T. de Givenchy, S. Amigoni, and F. Guittard, Superhydrophobic Surfaces by Electrochemical Processes, Adv. Mater., 2013, 25, p 1378–1394.

    Article  CAS  Google Scholar 

  14. F. Azizi and A. Kahoul, Electrodeposition and Corrosion Behavior of Zn–Co Coating Produced from a Sulphate Bath, Trans. IMF, 2016, 94, p 43–48.

    Article  CAS  Google Scholar 

  15. M.M. Abou-Krisha, A.G. Alshammari, F.H. Assaf, and F.A. El-Sheref, Electrochemical Behavior of Zn–Co–Fe Alloy Electrodeposited from a Sulfate Bath on Various Substrate Materials, Arabian. J. Chem., 2019, 12, p 3526–3533.

    Article  CAS  Google Scholar 

  16. H. Kancharla, G.K. Mandal, S.S. Singh, and K. Mondal, Effect of Strip Entry Temperature on the Interfacial Layer and Corrosion Behavior of Galvanized Steel, Surf. Coat. Technol., 2022, 433, p 128071–128085.

    Article  CAS  Google Scholar 

  17. ASTM G102-89, e1, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, (ASTM INTERNATIONAL, West Conshohocken, PA, 2015)

  18. H. Asgari, M.R. Toroghinejad, and M.A. Golozar, Effect of Coating Thickness on Modifying the Texture and Corrosion Performance of Hot-Dip Galvanized Coatings, Curr. Appl. Phys., 2009, 9, p 59–66.

    Article  Google Scholar 

  19. M.S. Chandrasekar, S. Srinivasan, and M. Pushpavanam, Structural and Textural Study of Electrodeposited Zinc from Alkaline Non-Cyanide Electrolyte, J Mater Sci., 2010, 45, p 1160–1169.

    Article  CAS  Google Scholar 

  20. A. Tozar and I.H. Karahan, Structural and Corrosion Protection Properties of Electrochemically Deposited Nano-Sized Zn–Ni alloy Coatings, Appl. Surf. Sci., 2014, 318, p 15–23.

    Article  CAS  Google Scholar 

  21. S. Ghaziof and W. Gao, The Effect of Pulse Electroplating on Zn–Ni Alloy and Zn–Ni–Al2O3 Composite Coatings, J. Alloys Compd., 2015, 622, p 918–924.

    Article  CAS  Google Scholar 

  22. S. Anwar, Y. Zhang, and F. Khan, Electrochemical Behavior and Analysis of Zn and Zn–Ni Alloy Anti-Corrosive Coatings Deposited from Citrate Baths, RSC Adv., 2018, 8, p 28861–28873.

    Article  CAS  Google Scholar 

  23. H.S. Maharana, S. Lakra, S. Pal, and A. Basu, Electrophoretic Deposition of Cu-SiO2 Coatings by DC and Pulsed DC for Enhanced Surface-Mechanical Properties, J. Mater. Eng. Perform., 2016, 25, p 327–337.

    Article  CAS  Google Scholar 

  24. A. Fazazi, M. Ouakki, and M. Cherkaoui, Electrochemical Deposition of Zn on Mild Steel, Mediterr. J. Chem., 2019, 8, p 30–41.

    Article  Google Scholar 

  25. Y. He, W.T. Sun, S.C. Wang, P.A.S. Reed, and F.C. Walsh, An Electrodeposited Ni-P-WS2 Coating with Combined Super-Hydrophobicity and Self-Lubricating Properties, Electrochim. Acta, 2017, 245, p 872–882.

    Article  CAS  Google Scholar 

  26. A.W. Peabody, Peabody’s Control of Pipeline Corrosion, second edn. (NACE International, 2001)

  27. J. Shi, J. Ming, D. Wang, and M. Wu, Improved Corrosion Resistance of a new 6% Cr Steel in Simulated Concrete Pore Solution Contaminated by Chlorides, Corros. Sci., 2020, 174, p 108851.

    Article  CAS  Google Scholar 

  28. NKr. Prasad, A.S. Pathak, S. Kundu, and K. Mondal, Novel Hybrid Sacrificial Anodes Based on High Phosphorus Pig Iron and Zn, Corros. Sci., 2021, 189, p 109616.

    Article  CAS  Google Scholar 

  29. G.P. Singh, A.P. Moon, S. Sengupta, G. Deo, S. Sangal, and K. Mondal, Corrosion Behavior of IF Steel in Various Media and its Comparison with Mild Steel, J. Mater. Eng. Perform., 2015, 24, p 1961–1974.

    Article  CAS  Google Scholar 

  30. T.E. Graedel, Corrosion Mechanisms for Zinc Exposed to the Atmosphere, J. Electrochem. Soc., 1989, 136, p 193C-203C.

    Article  CAS  Google Scholar 

  31. P. Volovitch, T.N. Vu, C. Allély, A. Abdel Aal, and K. Ogle, Understanding Corrosion Via Corrosion Product Characterization: II. Role of Alloying Elements in Improving the Corrosion Resistance of Zn–Al–Mg coatings on Steel, Corros. Sci., 2011, 53, p 2437–2445.

    Article  CAS  Google Scholar 

  32. R. Autengruber, G. Luckeneder, and A.W. Hassel, Corrosion of Press-Hardened Galvanized Steel, Corros. Sci., 2012, 63, p 12–19.

    Article  CAS  Google Scholar 

  33. H. Kancharla, G.K. Mandal, S.S. Singh, and K. Mondal, Effect of Prior Copper-Coating on the Microstructural Development and Corrosion behavior of Hot-Dip Galvanized Mn Containing High Strength Steel Sheet, Surf. Coat. Technol., 2022, 437, p 128347.

    Article  CAS  Google Scholar 

  34. C.C. Lin and C.M. Huang, Zn-Ni Alloy Coatings Electrodeposited by Pulse Current and their Corrosion Behavior, J Coat. Technol. Res., 2006, 3, p 99–104.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mondal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kancharla, H., Mandal, G.K., Maharana, H.S. et al. Structure-Dependent Corrosion Behavior of Electrodeposited Zn Coating. J. of Materi Eng and Perform 32, 2993–3006 (2023). https://doi.org/10.1007/s11665-022-07308-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07308-z

Keywords

Navigation