Skip to main content

Advertisement

Log in

Enhancement of Plasticity and Biocorrosion Resistance in a Plasma Electrolytic Oxidation-Treated Mg-Based Amorphous Alloy Composite

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

We report on a plasma electrolytic oxidation (PEO)-treated Mg-Zn-Ca-Si amorphous alloy composite with enhancement of plasticity and corrosion resistance. The coated composite material exhibits excellent mechanical properties in compression, with a large plastic strain of 11.2% and a high fracture strength of 709 MPa. The enhanced plasticity may mainly ascribe to the partial nanocrystallization of amorphous phase in composite during PEO process, which can not only prevent runway localized plastic flow due to work softening, but also can introduce nucleation sites for the bands resulting from stress mismatch and compositional heterogeneity. Moreover, comparing with bare amorphous alloy composite, the corrosion current density measured in stimulated body fluid for the PEO-treated specimen decreases from 1.08 × 10−3 to 4.45 × 10−7 A/cm2. The present study may provide a fundamental basis for developing high-performance biodegradable Mg alloys.Please check the edit made in the article title.Yes, I have checked. There is no problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author on request.

References

  1. F. Kiani, C.E. Wen, and Y.C. Li, Prospects and Strategies for Magnesium Alloys as Biodegradable Implants from Crystalline to Bulk Metallic Glasses and Composites-A Review, Acta Biomater., 2020, 103, p 1–23.

    Article  CAS  Google Scholar 

  2. K. Munir, J.X. Lin, C.E. Wen, P.F. Wright, and Y.C. Li, Mechanical, Corrosion, and Biocompatibility Properties of Mg-Zr-Sr-Sc Alloys for Biodegradable Implant Applications, Acta Biomater., 2020, 102, p 493–507.

    Article  CAS  Google Scholar 

  3. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27, p 1728–1734.

    Article  CAS  Google Scholar 

  4. F. Witte, The History of Biodegradable Magnesium Implants: A Review, Acta Biomater., 2010, 6, p 1680–1692.

    Article  CAS  Google Scholar 

  5. A.H.M. Sanchez, B.J. Luthringer, F. Feyerabend, and R. Willumeit, Mg and Mg Alloys: How Comparable are in vitro and in vivo Corrosion Rates? A Review, Acta Biomater., 2015, 13, p 16–31.

    Article  CAS  Google Scholar 

  6. W.H. Wang, H.L. Wu, R. Zan, Y. Sun, C. Blawert, S.X. Zhang, J.H. Ni, M.L. Zheludkevich, and X.N. Zhang, Microstructure Controls the Corrosion Behavior of a Lean Biodegradable Mg-2Zn Alloy, Acta Biomater., 2020, 107, p 349–361.

    Article  CAS  Google Scholar 

  7. H.F. Li and Y.F. Zheng, Recent Advances in Bulk Metallic Glasses for Biomedical Applications, Acta Biomater., 2016, 36, p 1–20.

    Article  Google Scholar 

  8. H.F. Li, S.J. Pang, Y. Liu, P.K. Liaw, and T. Zhang, In vitro Investigation of Mg-Zn-Ca-Ag Bulk Metallic Glasses for Biomedical Applications, J. Noncrystal. Solid, 2015, 427, p 134–138.

    Article  CAS  Google Scholar 

  9. Food and Nutrition Board IoM, Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride, National Academies Press, Washington, DC, 1997, p 190–249

    Google Scholar 

  10. J. Vormann, Magnesium: Nutrition and Metabolism, Mol. Asp. Med., 2003, 24, p 27–37.

    Article  CAS  Google Scholar 

  11. Food and Nutrition Board IoM, Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc, National Academies Press, Washington, DC, 2001, p 442–501

    Google Scholar 

  12. X.N. Gu, Y.F. Zheng, S.P. Zhong, T.F. Xi, J.Q. Wang, and W.H. Wang, Corrosion of, and Cellular Responses to Mg-Zn-Ca Bulk Metallic Glasses, Biomaterials, 2010, 31, p 1093–1103.

    Article  CAS  Google Scholar 

  13. X.L. Zhang, G. Chen, and T. Bauer, Mg-Based Bulk Metallic Glass Composite with High Bio-corrosion Resistance and Excellent Mechanical Properties, Intermetallics, 2012, 29, p 56–60.

    Article  CAS  Google Scholar 

  14. J.H. Gao, J. Sharp, D.K. Guan, W.M. Rainforth, and I. Todd, New Compositional Design for Creating tough Metallic Glass Composites with Excellent Work Hardening, Acta Mater., 2015, 86, p 208–215.

    Article  CAS  Google Scholar 

  15. J.F. Wang, S. Huang, Y.Y. Wei, S.F. Guo, and F.S. Pan, Enhanced Mechanical Properties and Corrosion Resistance of a Mg-Zn-Ca bulk Metallic Glass Composite by Fe Particle Addition, Mater. Lett., 2013, 91, p 311–314.

    Article  CAS  Google Scholar 

  16. H.L. Yin, W. Yang, L.C. Zhao, X.M. Hu, S.Q. Liu, C.X. Cui, and X. Wang, Fabrication and Mechanical Property of Three-dimensional Carbon Fiber Reinforced Mg-based Bulk Metallic Glass Matrix Composite, Mater. Sci. Eng. A, 2022, 839, p 142853.

    Article  CAS  Google Scholar 

  17. L. Liu, C.L. Qiu, H. Zou, and K.C. Chan, The Effect of the Microalloying of Hf on the Corrosion Behavior of ZrCuNiAl Bulk Metallic Glass, J. Alloy Compd., 2005, 399, p 144–148.

    Article  CAS  Google Scholar 

  18. R.C. Zeng, Z.D. Lan, L.H. Kong, Y.D. Huang, and H.Z. Cui, Characterization of Calcium-modified Zinc Phosphate Conversion Coatings and their Influences on Corrosion Resistance of AZ31 Alloy, Surf. Coat. Technol., 2011, 205, p 3347–3355.

    Article  CAS  Google Scholar 

  19. L.C. Li, J.H. Gao, and Y. Wang, Evaluation of Cyto-toxicity and Corrosion Behavior of Alkali-Heat-Treated Magnesium in Simulated Body Fluid, Surf. Coat. Technol., 2004, 185, p 92–98.

    Article  CAS  Google Scholar 

  20. J.X. Yang, F.Z. Cui, I.S. Lee and, X.M. Wang, Plasma Surface Modification of Magnesium Alloy for Biomedical Application, Surf. Coat. Technol., 2010, 205, p S182–S187.

    Article  CAS  Google Scholar 

  21. G.Y. Liu, J. Hu, Z.K. Ding, and C. Wang, Bioactive Calcium Phosphate Coating Formed on Micro-arc Oxidized Magnesium by Chemical Deposition, Appl. Surf. Sci., 2011, 257, p 2051–2057.

    Article  CAS  Google Scholar 

  22. C.J. Wu, Z.H. Wen, C.S. Dai, Y.X. Lu, and F.X. Yang, Fabrication of Calcium Phosphate/Chitosan Coatings on AZ91D Magnesium Alloy with a Novel Method, Surf. Coat. Technol., 2010, 204, p 3336–3347.

    Article  CAS  Google Scholar 

  23. D.C. Xue, Y.H. Yun, M.J. Schulz, and V. Shanov, Corrosion Protection of Biodegradable Magnesium Implants using Anodization, Mater. Sci. Eng. C, 2011, 31, p 215–223.

    Article  CAS  Google Scholar 

  24. N. Nashrah, M.P. Kamil, D.K. Yoon, Y.G. Kim, and Y.G. Ko, Formation Mechanism of Oxide Layer on AZ31 Mg Alloy Subjected to Micro-arc Oxidation Considering Surface Roughness, Appl. Surf. Sci., 2019, 497, p 143772.

    Article  CAS  Google Scholar 

  25. R.F. Zhang, Film Formation in the Second step of Micro-arc Oxidation on Magnesium Alloys, Corros. Sci., 2010, 52, p 1285–1290.

    Article  CAS  Google Scholar 

  26. S. Durdu, A. Aytac, and M. Usta, Characterization and Corrosion Behavior of Ceramic Coating on Magnesium by Micro-arc Oxidation, J. Alloy Compd., 2011, 509, p 8601–8606.

    Article  CAS  Google Scholar 

  27. Y.K. Pan, C.Z. Chen, D.G. Wang, X. Yu, and Z.Q. Lin, Influence of Additives on Microstructure and Property of Microarc Oxidized Mg-Si-O Coatings, Ceram. Int., 2012, 38, p 5527–5533.

    Article  CAS  Google Scholar 

  28. X.T. Shi, Y. Wang, H.Y. Li, S.F. Zhang, R.F. Zhao, G.Q. Li, R.F. Zhang, Y. Sheng, S.Y. Cao, Y.J. Zhao, L.N. Xu, and Y. Zhao, Corrosion Resistance and Biocompatibility of Calcium-containing Coatings Developed in Near-neutral Solutions Containing Phytic Acid and Phosphoric Acid on AZ31B Alloy, J. Alloy Compd., 2020, 823, p 153721.

    Article  CAS  Google Scholar 

  29. Y.K. Pan, C.Z. Chen, D.G. Wang, and D.L. Huang, Dissolution and Precipitation Behaviors of Silicon-containing Ceramic Coating on Mg-Zn-Ca Alloy in Simulated Body Fluid, Colloid. Surf. B, 2014, 122, p 746–751.

    Article  CAS  Google Scholar 

  30. L. Wang, L. Shi, J.J. Chen, Z.F. Shi, L. Ren, and Y.J. Wang, Biocompatibility of Si-incorporated TiO2 Film Prepared by Micro-arc Oxidation, Mater. Lett., 2014, 116, p 35–38.

    Article  CAS  Google Scholar 

  31. D.K. Pattanayak, T. Kawai, T. Matsushita, H. Takadama, T. Nakamura, and T. Kokubo, Effect of HCl Concentrations on Apatite-forming Ability of NaOH-HCl- and Heat-treated Titanium Metal, J. Mater. Sci. Mater. Med., 2009, 20, p 2401.

    Article  CAS  Google Scholar 

  32. S.P. Khan, G.G. Auner, and G.M. Newaz, Influence of Nanoscale Surface Roughness on Neural Cell Attachment on Silicon, Nanomedicine, 2005, 1, p 125–129.

    Article  CAS  Google Scholar 

  33. R.O. Hussein, X. Nie, D.O. Northwood, A. Yerokhin, and A. Matthews, Spectroscopic Study of Electrolytic Plasma and Discharging Behaviour during the Plasma Electrolytic Oxidation (PEO) Process, J. Phys. D: Appl. Phys., 2010, 43, p 105203.

    Article  Google Scholar 

  34. S. Mato, G. Alcala, P. Skeldon, G.E. Thompson, D. Masheder, H. Habazaki, and K. Shimizu, High Resistivity Magnesium-Rich Layers and Current Instability in Anodizing a Mg/Ta Alloy, Corros. Sci., 2003, 45, p 1779–1792.

    Article  CAS  Google Scholar 

  35. P.F. Chui, R. Jing, F.G. Zhang, J.H. Li, and T. Feng, Mechanical Properties and Corrosion Behavior of β-type Ti-Zr-Nb-Mo Alloys for Biomedical Application, J. Alloy Compd., 2020, 842, p 155693.

    Article  CAS  Google Scholar 

  36. R.M. Pilliar, Modern Metal Processing for Improved Load-Bearing Surgical Implants, Biomaterials, 1991, 12, p 95–100.

    Article  CAS  Google Scholar 

  37. B.A. Sun, J. Tan, S. Pauly, U. Kühn, and J. Eckert, Stable Fracture of a Malleable Zr-based Bulk Metallic Glass, J. Appl. Phys., 2012, 112, p 103533.

    Article  Google Scholar 

  38. G.L. Makar and J. Kruger, Corrosion of Magnesium, Int. Mater. Rev., 1993, 38, p 138–153.

    Article  CAS  Google Scholar 

  39. J.R. Li, Q.T. Jiang, H.Y. Sun, and Y.T. Li, Effect of Heat Treatment on Corrosion Behavior of AZ63 Magnesium Alloy in 3.5wt.% Sodium Chloride Solution, Corr. Sci., 2016, 111, p 288–301.

    Article  CAS  Google Scholar 

  40. Y.H. Xia, B.P. Zhang, C.X. Lu, and L. Geng, Improving the Corrosion Resistance of Mg-4.0Zn-0.2Ca Alloy by Micro-arc Oxidation, Mater. Sci. Eng. C, 2013, 33, p 5044–5050.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. I. Todd, Dr Q. Hu, and Dr G.S. Peng for stimulating discussions. The authors would like to acknowledge the financial support by the fund of Natural Science Foundation of Anhui Province (Grant No. 1908085ME147), International Cooperation and Exchanges in Anhui Provincial Key Project of Research (Grant Nos. 202004b11020010), Natural Science Foundation of Anhui Provincial Education Department (Grant No. KJ2020A0262), Open Project of Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Grant No. GFST2022ZR10), and College Students’ Innovative Entrepreneurial Training Program (S202110360179).

Author information

Authors and Affiliations

Authors

Contributions

S.S. Chen involved in conceptualization and methodology. P.D. Song took part in data curtion and writing—original draft. J. Yin participated in formal analysis and investigation. K. Qi involved in writing—review & editing. H.D. Li took part in data curtion. L. Hou involved in validation. W.H. Li took part in supervision.

Corresponding author

Correspondence to S. S. Chen.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work; there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S.S., Song, P.D., Yin, J. et al. Enhancement of Plasticity and Biocorrosion Resistance in a Plasma Electrolytic Oxidation-Treated Mg-Based Amorphous Alloy Composite. J. of Materi Eng and Perform 32, 2298–2306 (2023). https://doi.org/10.1007/s11665-022-07285-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07285-3

Keywords

Navigation