Skip to main content
Log in

Effect of PVD-TiN and CVD-Al2O3 Coatings on Cutting Force, Surface Roughness, Cutting Power, and Temperature in Hard Turning of AISI H13 Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present work focusses on the hard turning of AISI H13 tool steel with PVD-TiN- and CVD-Al2O3-coated ceramic cutting tools. In this context, hard turning tests have been performed under dry cutting conditions at five different cutting speeds (120, 165, 210, 255, and 300 m/min), three different feeds (0.12, 0.18, and 0.24 mm/rev), and a constant depth of cut of 0.6 mm. The main cutting force (Fc), surface roughness (Ra), cutting power (Pc), and temperature (T), as well tool wear mechanisms, have been investigated under these subjected conditions. The outcomes of this study show that while feed plays an important role in the main cutting force and surface roughness, cutting speed also plays an important role in cutting power and temperature. The average main cutting force, surface roughness, cutting power, and temperature are 13, 15, 14, and 11% better when AISI H13 alloy is machined with the PVD-TiN-coated inserts than those in the CVD-Al2O3-coated inserts, respectively. SEM examination also revealed that the abrasion and adhesion mechanism is more effective when AISI H13 alloy is machined with the CVD-Al2O3-coated inserts compared to those in the PVD-TiN-coated inserts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.K. Tonshoff, C. Arendt, and R. Ben Amor, Cutting of Hardened Steel, CIRP Ann., 2000, 49(2), p 547–566.

    Article  Google Scholar 

  2. W. König, A. Berktold, and K.F. Koch, Turning versus Grinding – A Comparison of Surface Integrity Aspects and Attainable Accuracies, CIRP Ann., 1993, 42(1), p 39–43.

    Article  Google Scholar 

  3. Y. Sahin and A.R. Motorcu, Surface Roughness Model for Machining Mild Steel with Coated Carbide Tool, Mater. Des., 2005, 26(4), p 321–326.

    Article  CAS  Google Scholar 

  4. H. Aouici, M.A. Yallese, B. Fnides, and T. Mabrouki, Machinability Investigation in Hard Turning of AISI H11 Hot Work Steel with CBN Tool, Mechanika, 2010, 86(6), p 71–77.

    Google Scholar 

  5. J.M. Zhou, M. Andersson, and J.E. Ståhl, Identification of Cutting Errors in Precision Hard Turning Process, J. Mater. Process. Technol., 2004, 153–154(1–3), p 746–750.

    Article  Google Scholar 

  6. M. Boy and İ Çiftçi, Experimental and Numerical Analysis of Cutting Force in Hard Turning of AISI 52100, ICENS, 2016, 2016, p 2129–2134.

    Google Scholar 

  7. W. König, M. Klinger, and R. Link, Machining Hard Materials with Geometrically Defined Cutting Edges — Field of Applications and Limitations, CIRP Ann., 1990, 39(1), p 61–64.

    Article  Google Scholar 

  8. S. Kumar, D. Singh, and N.S. Kalsi, Surface Quality Evaluation of AISI 4340 Steel Having Varying Hardness during Machining with TiN-Coated CBN Inserts, Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol., 2017, 231(7), p 925–933. https://doi.org/10.1177/1350650116684243

    Article  CAS  Google Scholar 

  9. H. Bensouilah, H. Aouici, I. Meddour, M.A. Yallese, T. Mabrouki, and F. Girardin, Performance of Coated and Uncoated Mixed Ceramic Tools in Hard Turning Process, Measurement, 2016, 82, p 1–18.

    Article  Google Scholar 

  10. A. Çiçek, T. Kıvak, E. Ekici, F. Kara, and N. Uçak, Performance of Multilayer Coated and Cryo-Treated Uncoated Tools in Machining of AISI H13 Tool Steel—Part 1: Tungsten Carbide End Mills, J. Mater. Eng. Perform., 2021, 30, p 3436–3445.

    Article  Google Scholar 

  11. K.C. Appa Rao, A.K. Birru, P.K. Bannaravuri, and E.D. Francis, Porosity Formation Studies in High Pressure die Castings of Al-9Si-3Cu Alloy Based on Taguchi Method, Int. J. Struct. Integr., 2022, 13(1), p 78–91. https://doi.org/10.1108/IJSI-06-2020-0056

    Article  Google Scholar 

  12. R. Suresh, A.G. Joshi, and M. Manjaiah, Experimental Investigation on Tool Wear in AISI H13 Die Steel Turning Using RSM and ANN Methods, Arab. J. Sci. Eng., 2021, 46(3), p 2311–2325. https://doi.org/10.1007/s13369-020-05038-9

    Article  Google Scholar 

  13. P. Kumar, S.R. Chauhan, C.I. Pruncu, M.K. Gupta, D.Y. Pimenov, M. Mia, and H.S. Gill, Influence of Different Grades of CBN Inserts on Cutting Force and Surface Roughness of AISI H13 Die Tool Steel during Hard Turning Operation, Materials (Basel), 2019, 12(1), p 177. https://doi.org/10.3390/ma12010177

    Article  CAS  Google Scholar 

  14. C. Moganapriya, R. Rajasekar, R. Santhosh, S. Saran, S. Santhosh, V.K. Gobinath, and P.S. Kumar, Sustainable Hard Machining of AISI 304 Stainless Steel Through TiAlN, AlTiN, and TiAlSiN Coating and Multi-Criteria Decision Making Using Grey Fuzzy Coupled Taguchi Method, J. Mater. Eng. Perform., 2022. https://doi.org/10.1007/s11665-022-06751-2

    Article  Google Scholar 

  15. S.M. Raza, A.M. Khan, M.U. Farooq, A. Iqbal, D.Y. Pimenov, K. Giasin, and K. Leksycki, Modelling and Analysis of Surface Evolution on Turning of Hard-to-Cut CLARM 30NiCrMoV14 Steel Alloy, Metals (Basel), 2021, 11(11), p 1751. https://doi.org/10.3390/met11111751

    Article  CAS  Google Scholar 

  16. A.A. Elsadek, A.M. Gaafer, S.S. Mohamed, and A.A. Mohamed, Prediction and Optimization of Cutting Temperature on Hard-Turning of AISI H13 Hot Work Steel, SN Appl. Sci., 2020. https://doi.org/10.1007/s42452-020-2303-5

    Article  Google Scholar 

  17. T. Özel and Y. Karpat, Predictive Modeling of Surface Roughness and Tool Wear in Hard Turning Using Regression and Neural Networks, Int. J. Mach. Tools Manuf. Pergamon, 2005, 45(4–5), p 467–479.

    Article  Google Scholar 

  18. A. Çiçek, F. Kara, T. Kivak, and E. Ekici, Evaluation of Machinability of Hardened and Cryo-Treated AISI H13 Hot Work Tool Steel with Ceramic Inserts, Int. J. Refract. Met. Hard Mater., 2013, 41, p 461–469.

    Article  Google Scholar 

  19. U. Umer and A. Al-Ahmari, 3D Modeling of Tool Wear and Optimization in Hard Turning Considering the Effects of Tool Cutting Edge and Nose Radii, Int. J. Adv. Manuf. Technol., 2021. https://doi.org/10.1007/s00170-021-07998-0

    Article  Google Scholar 

  20. M. Boy, M. Gunay, H. Demir, and I. Ciftci, Effects of the Approach Angle on the Cutting Force and Surface Roughness on Hard Turning of AISI 52100. In: Proceedings of 19th İnternational Conference, Mechanika, 2014, pp 58–63.

  21. K. Bouacha, M.A. Yallese, T. Mabrouki, and J.F. Rigal, Statistical Analysis of Surface Roughness and Cutting Forces Using Response Surface Methodology in Hard Turning of AISI 52100 Bearing Steel with CBN Tool, Int. J. Refract. Met. Hard Mater., 2010, 28(3), p 349–361.

    Article  CAS  Google Scholar 

  22. A. Çiçek, T. Kıvak, I. Uygur, E. Ekici, and Y. Turgut, Performance of Cryogenically Treated M35 HSS Drills in Drilling of Austenitic Stainless Steels, Int. J. Adv. Manuf. Technol., 2012, 60(1), p 65–73. https://doi.org/10.1007/s00170-011-3616-8

    Article  Google Scholar 

  23. I. Ciftci, Machining of Austenitic Stainless Steels Using CVD Multi-Layer Coated Cemented Carbide Tools, Tribol. Int., 2006, 39(6), p 565–569. https://doi.org/10.1016/j.triboint.2005.05.005

    Article  CAS  Google Scholar 

  24. B. Sieben, T. Wagner, and D. Biermann, Empirical Modeling of Hard Turning of AISI 6150 Steel Using Design and Analysis of Computer Experiments, Prod. Eng., 2010, 4(2), p 115–125. https://doi.org/10.1007/s11740-010-0208-7

    Article  Google Scholar 

  25. A. Thakur, S. Gangopadhyay, K.P. Maity, and S.K. Sahoo, Evaluation on Effectiveness of CVD and PVD Coated Tools during Dry Machining of Incoloy 825, Tribol. Trans., 2016, 59(6), p 1048–1058. https://doi.org/10.1080/10402004.2015.1131350

    Article  CAS  Google Scholar 

  26. O. Özbek and H. Saruhan, The Effect of Vibration and Cutting Zone Temperature on Surface Roughness and Tool Wear in Eco-Friendly MQL Turning of AISI D2, J. Mater. Res. Technol., 2020, 9(3), p 2762–2772.

    Article  Google Scholar 

  27. B. Özlü, H. Demir, M. Türkmen, and S. Gündüz, Examining the Machinability of 38MnVS6 Microalloyed Steel, Cooled in Different Mediums after Hot Forging with the Coated Carbide and Ceramic Tool, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2021, 235(22), p 6228–6239. https://doi.org/10.1177/0954406220984498

    Article  CAS  Google Scholar 

  28. V.N. Gaitonde, S.R. Karnik, L. Figueira, and J. Paulo Davim, Machinability Investigations in Hard Turning of AISI D2 Cold Work Tool Steel with Conventional and Wiper Ceramic Inserts, Int. J. Refract. Met. Hard Mater., 2009, 27(4), p 754–763.

    Article  CAS  Google Scholar 

  29. J.P. Davim and L. Figueira, Machinability Evaluation in Hard Turning of Cold Work Tool Steel (D2) with Ceramic Tools Using Statistical Techniques, Mater. Des., 2007, 28(4), p 1186–1191.

    Article  CAS  Google Scholar 

  30. V.N. Gaitonde, S.R. Karnik, L. Figueira, and J.P. Davim, Performance Comparison of Conventional and Wiper Ceramic Inserts in Hard Turning through Artificial Neural Network Modeling, Int. J. Adv. Manuf. Technol., 2011, 52(1), p 101–114. https://doi.org/10.1007/s00170-010-2714-3

    Article  Google Scholar 

  31. A. Thakur, S. Gangopadhyay, and A. Mohanty, Investigation on Some Machinability Aspects of Inconel 825 During Dry Turning, Mater. Manuf. Process., 2015, 30(8), p 1026–1034. https://doi.org/10.1080/10426914.2014.984216

    Article  CAS  Google Scholar 

  32. C. Ezilarasan, V.S. Senthil Kumar, and A. Velayudham, Effect of Machining Parameters on Surface Integrity in Machining Nimonic C-263 Super Alloy Using Whisker-Reinforced Ceramic Insert, J. Mater. Eng. Perform., 2013, 22(6), p 1619–1628. https://doi.org/10.1007/s11665-012-0439-1

    Article  CAS  Google Scholar 

  33. V.N. Gaitonde, S.R. Karnik, L. Figueira, and J.P. Davim, Analysis of Machinability During Hard Turning of Cold Work Tool Steel (Type: AISI D2), Mater. Manuf. Process., 2009, 24(12), p 1373–1382. https://doi.org/10.1080/10426910902997415

    Article  Google Scholar 

  34. D.Y. Pimenov, A.T. Abbas, M.K. Gupta, I.N. Erdakov, M.S. Soliman, and M.M. El Rayes, Investigations of Surface Quality and Energy Consumption Associated with Costs and Material Removal Rate during Face Milling of AISI 1045 Steel, Int. J. Adv. Manuf. Technol., 2020, 107(7), p 3511–3525. https://doi.org/10.1007/s00170-020-05236-7

    Article  Google Scholar 

  35. T. Kitagawa, E. Usui, and T. Shirakashi, Analytical Prediction of Three Dimensional Cutting Process, Part 3: Cutting Temperature and Crater Wear of Carbide Too, ASME J. Eng. Ind., 1978, 100(5), p 236–243.

    Google Scholar 

  36. N.A. Özbek, O. Özbek, and F. Kara, Statistical Analysis of the Effect of the Cutting Tool Coating Type on Sustainable Machining Parameters, J. Mater. Eng. Perform., 2021, 30(10), p 7783–7795. https://doi.org/10.1007/s11665-021-06066-8

    Article  CAS  Google Scholar 

  37. M. Fahad, P.T. Mativenga, and M.A. Sheikh, An Investigation of Multilayer Coated (TiCN/Al2O3-TiN) Tungsten Carbide Tools in High Speed Cutting Using a Hybrid Finite Element and Experimental Technique, Proc. Inst. Eng. Part B J. Eng. Manuf., 2011, 225(10), p 1835–1850. https://doi.org/10.1177/0954405411404504

    Article  CAS  Google Scholar 

  38. D.G. Cahill, S. Lee, and T. Selinder, Thermal Conductivity of κ-Al 2 O 3 and α-Al 2 O 3 Wear-Resistant Coatings, J. Appl. Phys., 1998, 83(11), p 5783–5786.

    Article  CAS  Google Scholar 

  39. H. Demir, S. Gündüz, and M.A. Erden, Influence of the Heat Treatment on the Microstructure and Machinability of AISI H13 Hot Work Tool Steel, Int. J. Adv. Manuf. Technol., 2018, 95(5), p 2951–2958. https://doi.org/10.1007/s00170-017-1426-3

    Article  Google Scholar 

  40. N.G. Phafat, R.R. Deshmukh, and S.D. Deshmukh, Study of Cutting Parameters Effects in MQL-Employed Hard-Milling Process for AISI H13 for Tool Life, Appl. Mech. Mater., 2013, 393, p 240–245. https://doi.org/10.4028/www.scientific.net/AMM.393.240

    Article  CAS  Google Scholar 

  41. F. Akbar, P.T. Mativenga, and M.A. Sheikh, An Evaluation of Heat Partition in the High-Speed Turning of AISI/SAE 4140 Steel with Uncoated and TiN-Coated Tools, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2008, 222(7), p 759–771. https://doi.org/10.1243/09544054JEM1072

    Article  CAS  Google Scholar 

  42. H. Wang, J. Zhang, M. Yi, G. Xiao, Z. Chen, C. Sheng, and C. Xu, Simulation Study on Influence of Coating Thickness on Cutting Performance of Coated Ceramic Cutting Tools, J. Phys. Conf. Ser., 2020, 1549(3), p 032140.

    Article  CAS  Google Scholar 

  43. F. Akbar, P.T. Mativenga, and M.A. Sheikh, On the Heat Partition Properties of (Ti, Al)N Compared with TiN Coating in High-Speed Machining, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2009, 223(4), p 363–375. https://doi.org/10.1243/09544054JEM1365

    Article  CAS  Google Scholar 

  44. M. Akgün and F. Kara, Analysis and Optimization of Cutting Tool Coating Effects on Surface Roughness and Cutting Forces on Turning of AA 6061 Alloy, Adv. Mater. Sci. Eng., 2021, 2021, p 6498261. https://doi.org/10.1155/2021/6498261

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuat Kara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akgün, M., Özlü, B. & Kara, F. Effect of PVD-TiN and CVD-Al2O3 Coatings on Cutting Force, Surface Roughness, Cutting Power, and Temperature in Hard Turning of AISI H13 Steel. J. of Materi Eng and Perform 32, 1390–1401 (2023). https://doi.org/10.1007/s11665-022-07190-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07190-9

Keywords

Navigation