Skip to main content
Log in

Machinability Analysis of Composite Electrode Produced by Spark Plasma Sintering Process during Electro-Discharge Machining of Titanium Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present experimental work aims at fabricating composite tool electrode made of copper, tungsten and boron carbide using spark plasma sintering process. Specifically, the study focuses on assessment of its performance during electro-discharge machining of titanium alloy. The machining parameters considered in this work are peak current, pulse duration and pulse cycle along with composition of tool electrode material (weight percentage of tungsten and boron carbide). In order to evaluate the performance of spark plasma sintered tool electrode, the machining characteristics considered are material removal rate, electrode wear rate, surface roughness, surface crack density, white layer thickness and micro-hardness of the machined surface. The energy dispersive x-ray spectrometry of the machined surface reveals that transfer of electrode elements onto the machined surface occurs with increase in the percentage of carbon and oxygen on it. X-ray diffraction of machined surface shows formation of metallic carbides (Al3B48C2, VC, TiC, W2B and W6C2.54) on it causing increase in micro-hardness of the machined surface and formation of recast layer or white layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

MRR:

Material removal rate,

EWR:

Electrode wear rate,

EDM:

Electro-discharge machining,

SR:

Surface roughness,

SCD:

Surface crack density,

WLT:

White layer thickness.

MH:

Micro-hardness,

EDX:

Energy dispersive x-ray spectroscopy,

XRD:

X-ray diffraction,

SPS:

Spark plasma sintering,

PM:

Powder metallurgy

A:

Tool type

B:

Peak current in A

C:

Pulse duration in µs

D:

Pulse cycle in %

Fp :

Flushing pressure in MPa

V:

Voltage in V

Wi :

Initial weight of work piece in g

Wf :

Final weight of work piece (after machining) in g

ρw :

Density of work piece material in g/cm3

Wti :

Initial weight of electrode in g

Wtf :

Final weight of electrode (after machining) in g

ρt :

Density of electrode material in g/cm3

References

  1. B. Kuriachen and J. Mathew, Effect of Powder Mixed Dielectric on Material Removal and Surface Modification in Microelectric Discharge Machining of Ti-6Al-4V, Mater. Manuf. Process., 2016, 31(4), p 439–446.

    Article  CAS  Google Scholar 

  2. B. Kuriachen and J. Mathew, Experimental Investigations into the Effects of Microelectric-Discharge Milling Process Parameters on Processing Ti-6Al-4V, Mater. Manuf. Process., 2015, 30(8), p 983–990.

    Article  CAS  Google Scholar 

  3. N. Ekmekci and B. Ekmekci, Electrical Discharge Machining of Ti6Al4V in Hydroxyapatite Powder Mixed Dielectric Liquid, Mater. Manuf. Process., 2016, 31(13), p 1663–1670.

    Article  CAS  Google Scholar 

  4. A.K. Khanra, B.R. Sarkar, B. Bhattacharya, L.C. Pathak and M.M. Godkhindi, Performance of ZrB2-Cu Composite as an EDM Electrode, J. Mater. Process. Technol., 2007, 183(1), p 122–126.

    Article  CAS  Google Scholar 

  5. H.C. Tsai, B.H. Yan and F.Y. Huang, EDM Performance of Cr/Cu-Based Composite Electrodes, Int. J. Mach. Tools Manuf., 2003, 43(3), p 245–252.

    Article  Google Scholar 

  6. L. Li, Z.W. Niu and G.M. Zheng, Ultrasonic Electrodeposition of Cu-SiC Electrodes for EDM, Mater. Manuf. Process., 2016, 31(1), p 37–41.

    Article  Google Scholar 

  7. L. Li, Y.S. Wong, J.Y.H. Fuh and L. Lu, Effect of TiC in Copper-Tungsten Electrodes on EDM Performance, J. Mater. Process. Technol., 2001, 113(1-3), p 563–567.

    Article  CAS  Google Scholar 

  8. L. Li, Y.S. Wong, J.Y.H. Fuh and L. Lu, EDM Performance of TiC/Copper-Based Sintered Electrodes, Mater. Des., 2001, 22(8), p 669–678.

    Article  CAS  Google Scholar 

  9. H.M. Zaw, J.Y.H. Fuh, A.Y.C. Nee and L. Lu, Formation of a New EDM Electrode Material Using Sintering Techniques, J. Mater. Process. Technol., 1999, 89-90, p 182–186.

    Article  Google Scholar 

  10. C. Cogun, Z. Esen, A. Genc, F. Cogun and N. Akturk, Effect of Powder Metallurgy Cu-B4C Electrodes on Workpiece Surface Characteristics and Machining Performance of Electric Discharge Machining, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2016, 230(12), p 2190–2203.

    Article  CAS  Google Scholar 

  11. A.S. Gill and S. Kumar, Surface Roughness and Microhardness Evaluation for EDM with Cu-Mn Powder Metallurgy Tool, Mater. Manuf. Process., 2016, 31(4), p 514–521.

    Article  CAS  Google Scholar 

  12. P. Balasubramanian and T. Senthilvelan, A Comparative Study on the Performance of Different Sintered Electrodes in Electrical Discharge Machining, Trans. Indian Inst. Met., 2015, 68(1), p 51–59.

    Article  CAS  Google Scholar 

  13. K.M. Shu and G.C. Tu, Fabrication and Characterization of Cu-SiCp Composites for Electrical Discharge Machining Applications, Mater. Manuf. Process., 2001, 16(4), p 483–502.

    Article  CAS  Google Scholar 

  14. T.A. El-Taweel, Multi-Response Optimization of EDM with Al-Cu-Si-TiC P/M Composite Electrode, Int. J. Adv. Manuf. Technol., 2009, 44(1-2), p 100–113.

    Article  Google Scholar 

  15. P.M. Kumar, K. Sivakumar and N. Jayakumar, Multiobjective Optimization and Analysis of Copper-Titanium Diboride Electrode in EDM of Monel 400TM Alloy, Mater. Manuf. Process., 2018, 33(13), p 1429–1437.

    Article  CAS  Google Scholar 

  16. J. Marafona and C. Wykes, New Method of Optimising Material Removal Rate Using EDM with Copper-Tungsten Electrodes, Int. J. Mach. Tools Manuf., 2000, 40(2), p 153–164.

    Article  Google Scholar 

  17. J.D. Marafona, Black Layer Affects the Thermal Conductivity of the Surface of Copper-Tungsten Electrode, Int. J. Adv. Manuf. Technol., 2009, 42(5-6), p 482–488.

    Article  Google Scholar 

  18. A.S. Walia, V. Jain and V. Srivastava, Development and Performance Evaluation of Sintered Tool Tip While EDMing of Hardened Steel, Mater. Res. Express., 2019, 6(8), p 086520.

    Article  CAS  Google Scholar 

  19. M. Bhaumik and K. Maity, Effect of Electrode Materials on Different EDM Aspects of Titanium Alloy, SILICON, 2019, 11(1), p 187–196.

    Article  CAS  Google Scholar 

  20. M. Bhaumik and K. Maity, Multi-Response Optimization of EDM Parameters Using Grey Relational Analysis (GRA) for Ti-5Al-2.5Sn Titanium Alloy, World. J. Eng., 2021, 18(1), p 50–57.

    Article  CAS  Google Scholar 

  21. M.B. Ndaliman, A.A. Khan and M. Yali, Influence of Dielectric Fluids on Surface Properties of Electrical Discharge Machined Titanium Alloy, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2013, 227(9), p 1310–1316.

    Article  CAS  Google Scholar 

  22. S.P. Sivam, A.L. Michaelraj, S. SatisKumar, R. Varahamoorthy and D. Dinakaran, Effects of Electrical Parameters, Its Interaction and Tool Geometry in Electric Discharge Machining of Titanium Grade 5 Alloy with Graphite Tool, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2013, 227(1), p 119–131.

    Article  CAS  Google Scholar 

  23. M.A.R. Khan, M.M. Rahman and K. Kadirgama, An Experimental Investigation on Surface Finish in Die-Sinking EDM of Ti-5Al-2.5Sn, Int. J. Adv. Manuf. Technol., 2015, 77(9-12), p 1727–1740.

    Article  Google Scholar 

  24. P. Karmiris-Obratański, K. Zagórski, E.L. Papazoglou and A.P. Markopoulos, Surface texture and integrity of electrical discharged machined titanium alloy, Int. J. Adv. Manuf. Technol., 2021, 115, p 733–747.

    Article  Google Scholar 

  25. M. Shabgard and B. Khosrozadeh, Investigation of Carbon Nanotube Added Dielectric on the Surface Characteristics and Machining Performance of Ti–6Al–4V Alloy in EDM Process, J. Manuf. Process., 2017, 25, p 212–219.

    Article  Google Scholar 

  26. A.K. Sahu and S.S. Mahapatra, Performance Analysis of Tool Electrode Prepared through Laser Sintering Process during Electrical Discharge Machining of Titanium, Int. J. Adv. Manuf. Technol., 2020, 106(3-4), p 1017–1041.

    Article  Google Scholar 

  27. A.K. Sahu and S.S. Mahapatra, Surface Characteristics of EDMed Titanium Alloy and AISI 1040 Steel Workpieces Using Rapid Tool Electrode, Arab. J. Sci. Eng., 2020, 45(2), p 699–718.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshuman Kumar Sahu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, A.K., Mahapatra, S.S., Ravi, R. et al. Machinability Analysis of Composite Electrode Produced by Spark Plasma Sintering Process during Electro-Discharge Machining of Titanium Alloy. J. of Materi Eng and Perform 32, 1310–1332 (2023). https://doi.org/10.1007/s11665-022-07156-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07156-x

Keywords

Navigation