Skip to main content
Log in

Characterizations of the Microstructure and Texture of 321 Austenitic Stainless Steel After Cryo-Rolling and Annealing Treatments

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, AISI 321 austenitic stainless steel was cryo-rolled at 77 K (−196 °C) to a 20, 50, and 90% thickness reduction to investigate its microstructure and texture evolutions. The cryo-rolled sample was subsequently annealed at 1023, 1223, and 1323 K (750, 950, and 1050 °C, respectively) for 5, 15, and 30 min. The rolling and annealing textures consisting of the reversion of martensite to austenite were examined and compared with those in the literature. The results showed that strain-induced α'-martensite and deformation twinning along with the slip mechanism contributed to the plastic deformation. The volume fraction of α'-martensite increased from 13 to 74% with the increase in thickness reduction from 20 to 50%, respectively, whereas while further deformation to 90% resulted in a volume fraction of 92%. The micro-textures and macro-textures depicted the Brass and Goss components as the dominant texture after a 90% thickness reduction, while the intensity of their textures decreased compared with a 50% reduction. Newly reverted austenite grains with an equiaxed morphology were obtained after annealing at 1023 K (750 °C) for 5 min, while α'-martensite fully reverted to austenite at a higher annealing time (15 min). The micro-texture and macro-texture analyses indicated that the major texture component of austenite after annealing was {110} <uvw> (Brass and Goss), which was stronger in the specimen annealed at 1323 K (1050 °C) compared to 1023 K and 1223 K (750 and 950 °C). The texture intensity of the annealed specimen increased with the increasing of annealing time from 5 to 30 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Liu, Z. Zhao and Z. Zhang, Eddy Current Assessment of the Cold Rolled Deformation Behavior of AISI 321 Stainless Steel, J. Mater. Eng. Perform., 2012, 21, p 1772–1776.

    Article  CAS  Google Scholar 

  2. J. Wang, Y. Lin, J. Yan, D. Zen, Q. Zhang, R. Huang and H. Fan, Influence of Time on the Microstructure of AISI 321 Austenitic Stainless Steel in Salt Bath Nitriding, Surf. Coat. Technol., 2012, 206, p 3399–3404.

    Article  CAS  Google Scholar 

  3. A.T. Krawczynska, W. Chrominski, E. Ura-Binczyk, M. Kulczyk and M. Lewandowska, Mechanical Properties and Corrosion Resistance of Ultrafine Grained Austenitic Stainless Steel Processed by Hydrostatic Extrusion, Mater. Des., 2017, 136, p 34–44.

    Article  CAS  Google Scholar 

  4. M. Yeganeh, I. Khosravi-Bigdeli, M. Eskandari and S.A. Zaree, Corrosion Inhibition of l-Methionine Amino Acid as a Green Corrosion Inhibitor for Stainless Steel in the H 2 SO 4 Solution, J. Mater. Eng. Perform., 2020, 29, p 3983–3994.

    Article  CAS  Google Scholar 

  5. D. Llewellyn and R. Hudd, Steels: Metallurgy and Applications, Elsevier, 1998.

    Google Scholar 

  6. X. Li, Y. Wei, Z. Wei and J. Zhou, Effect of Cold Rolling on Microstructure and Mechanical Properties of AISI 304N Stainless Steel, IOP Conf. Series: Earth. Environ. Sci, 2019, 252, p 022027.

    Google Scholar 

  7. G. Sun, L. Du, J. Hu, B. Zhang and R. Misra, On the Influence of Deformation Mechanism During Cold and Warm Rolling on Annealing Behavior of a 304 Stainless Steel, Mater. Sci. Eng., A, 2019, 746, p 341–355.

    Article  CAS  Google Scholar 

  8. A.H. RAMIREZ, C.H. RAMIREZ, I. Costa, Cold Rolling effects on the Microstructure and Pitting Resistance of the NBR ISO 5832–1 Austenitic Stainless Steel. Int J Electrochem Sci 2014,

  9. A. Hamada, L. Karjalainen and M. Somani, Electrochemical Corrosion Behaviour of a Novel Submicron-Grained Austenitic Stainless Steel in an Acidic NaCl Solution, Mater. Sci. Eng., A, 2006, 431, p 211–217.

    Article  Google Scholar 

  10. S. Tokita, H. Kokawa and Y.S. Sato, Effect of Thermomechanical Parameters on Grain Growth and Recrystallization during Grain Boundary Engineering of Austenitic Stainless Steel, J. Phys: Conf. Ser., 2019, 1270(1), p 012031.

    CAS  Google Scholar 

  11. M.G. Shahri, S.R. Hosseini and M. Salehi, Formation of nano/ultrafine grains in AISI 321 Stainless Steel Using Advanced Thermo-Mechanical Process, Acta. Metall. Sinica. (English Letters), 2015, 28, p 499–504.

    Article  CAS  Google Scholar 

  12. A. Tiamiyu, U. Eduok, J. Szpunar and A. Odeshi, Corrosion Behavior of Metastable AISI 321 Austenitic Stainless Steel: Investigating the Effect of Grain Size and Prior Plastic Deformation on its Degradation Pattern in Saline Media, Sci. Rep., 2019, 9, p 1–18.

    Article  CAS  Google Scholar 

  13. A. Tiamiyu, J. Szpunar, A. Odeshi, I. Oguocha and M. Eskandari, Development of Ultra-Fine-Grained Structure in AISI 321 Austenitic Stainless Steel, Metall. Mater. Trans. A., 2017, 48, p 5990–6012.

    Article  CAS  Google Scholar 

  14. J. Lv and H. Luo, The Effect of Low Temperature Sensitization on Corrosion Resistance of Ultrafine-Grained type 321 Stainless Steels, J. Mater. Eng. Perform., 2014, 23, p 262–267.

    Article  CAS  Google Scholar 

  15. M.S. Ghazani and B. Eghbali, Characterization of the Hot Deformation Microstructure of AISI 321 Austenitic Stainless Steel, Mater. Sci. Eng., A, 2018, 730, p 380–390.

    Article  CAS  Google Scholar 

  16. J.-X. Huang, X.-N. Ye and Z. Xu, Effect of Cold Rolling on Microstructure and Mechanical Properties of AISI 301LN Metastable Austenitic Stainless Steels, J. Iron. Steel Res. Int., 2012, 19, p 59–63.

    Article  CAS  Google Scholar 

  17. A.F. Padilha, R.L. Plaut and P.R. Rios, Annealing of Cold-Worked Austenitic Stainless Steels, ISIJ Int., 2003, 43, p 135–143.

    Article  CAS  Google Scholar 

  18. M. Odnobokova, A. Belyakov and R. Kaibyshev, Grain Refinement and Strengthening of Austenitic Stainless Steels During Large Strain Cold Rolling, Phil. Mag., 2019, 99, p 531–556.

    Article  CAS  Google Scholar 

  19. A. Belyakov, M. Odnobokova, I. Shakhova and R. Kaibyshev, Regularities of Microstructure Evolution and Strengthening Mechanisms of Austenitic Stainless Steels Subjected to Large Strain Cold Working, Mater. Sci. Forum. Trans. Tech. Publ., 2017, 879, p 224–229.

    Article  Google Scholar 

  20. S. Sharma, B.R. Kumar, B. Kashyap and N. Prabhu, Effect of Stored Strain Energy Heterogeneity on Microstructure Evolution of 90% Cold Rolled AISI 304L Stainless Steel During Interrupted Annealing Treatment, Mater. Charact., 2018, 140, p 72–85.

    Article  CAS  Google Scholar 

  21. D. Chatterjee, Effect of Repeated Warm Rolling Cold Rolling and Annealing on the Microstructure and Mechanical Properties of AISI 301LN Grade Austenitic Stainless Steel, Mater. Today: Proc, 2021, 46, p 10604–10611.

    CAS  Google Scholar 

  22. M. Naghizadeh and H. Mirzadeh, Processing of Fine Grained AISI 304L Austenitic Stainless Steel by Cold Rolling and High-Temperature Short-Term Annealing, Mate. Res. Express, 2018, 5, 056529.

    Article  Google Scholar 

  23. D.C.C. Magalhães, A.M. Kliauga, M. Ferrante and V.L. Sordi, Plastic Deformation of FCC Alloys at Cryogenic Temperature: the Effect of Stacking-Fault Energy on Microstructure and Tensile Behaviour, J. Mater. Sci., 2017, 52, p 7466–7478.

    Article  Google Scholar 

  24. S. Nikkhah, H. Mirzadeh and M. Zamani, Fine Tuning the Mechanical Properties of Dual Phase Steel Via Thermomechanical Processing of Cold Rolling and Intercritical Annealing, Mater. Chem. Phys., 2019, 230, p 1–8.

    Article  CAS  Google Scholar 

  25. M. Salehi, M. Eskandari and M. Yeganeh, Investigation of the Effect of Thermomechanical Processing on Microstructure and Corrosion Resistance of 321 Austenitic Stainless Steel, J. Adv. Mater. Eng. (Esteghlal), 2021, 40, p 65–82.

    Google Scholar 

  26. J. Zhao and Z. Jiang, Thermomechanical Processing of Advanced High Strength Steels, Prog. Mater Sci., 2018, 94, p 174–242.

    Article  CAS  Google Scholar 

  27. M. Nezakat, H. Akhiani, S.M. Sabet and J. Szpunar, Electron Backscatter and X-ray Diffraction Studies on the Deformation and Annealing Textures of Austenitic Stainless Steel 310S, Mater. Charact., 2017, 123, p 115–127.

    Article  CAS  Google Scholar 

  28. S.G. Chowdhury, S. Das, B. Ravikumar and P. De, Twinning-Induced Sluggish Evolution of Texture During Recrystallization in AISI 316L Stainless Steel After Cold Rolling, Metall. and Mater. Trans. A., 2006, 37, p 2349–2359.

    Article  Google Scholar 

  29. J.-T. Shi, L.-G. Hou, J.-R. Zuo, L.-Z. Zhuang and J.-S. Zhang, Effect of Cryogenic Rolling and Annealing on the Microstructure Evolution and Mechanical Properties of 304 Stainless Steel, Int. J. Miner. Metall. Mater., 2017, 24, p 638–645.

    Article  CAS  Google Scholar 

  30. M. Shirdel, H. Mirzadeh and M. Parsa, Nano/ultrafine Grained Austenitic Stainless Steel Through the Formation and Reversion of Deformation-Induced Martensite: Mechanisms, Microstructures, Mechanical Properties, and TRIP Effect, Mater. Charact., 2015, 103, p 150–161.

    Article  CAS  Google Scholar 

  31. A. Hedayati, A. Najafizadeh, A. Kermanpur and F. Forouzan, The Effect of Cold Rolling Regime on Microstructure and Mechanical Properties of AISI 304L Stainless Steel, J. Mater. Process. Technol., 2010, 210, p 1017–1022.

    Article  CAS  Google Scholar 

  32. Y. Xiong, T. He, J. Wang, Y. Lu, L. Chen, F. Ren, Y. Liu and A.A. Volinsky, Cryorolling Effect on Microstructure and Mechanical Properties of Fe 25Cr 20Ni Austenitic Stainless Steel, Mater. Des., 2015, 88, p 398–405.

    Article  CAS  Google Scholar 

  33. T. Shintani and Y. Murata, Evaluation of the Dislocation Density and Dislocation Character in Cold Rolled Type 304 Steel Determined by Profile Analysis of X-ray Diffraction, Acta. Mater., 2011, 59, p 4314–4322.

    Article  CAS  Google Scholar 

  34. H. Hotz, B. Kirsch and J.C. Aurich, Impact of the Thermomechanical Load on Subsurface Phase Transformations During Cryogenic Turning of Metastable Austenitic Steels, J. Intell. Manuf., 2021, 32, p 877–894.

    Article  Google Scholar 

  35. M. Bourke, J. Maldonado, D. Masters, K. Meggers and H. Priesmeyer, Real Time Measurement by Bragg Edge Diffraction of the Reverse (α′→ γ) Transformation in a Deformed 304 Stainless Steel, Mater. Sci. Eng., A, 1996, 221, p 1–10.

    Article  Google Scholar 

  36. M. Naghizadeh and H. Mirzadeh, Modeling the Kinetics of Deformation-Induced Martensitic Transformation in AISI 316 Metastable Austenitic Stainless Steel, Vacuum, 2018, 157, p 243–248.

    Article  CAS  Google Scholar 

  37. H. Rezaei, M.S. Ghazani and B. Eghbali, Effect of Post Deformation Annealing on the Microstructure and Mechanical Properties of Cold Rolled AISI 321 Austenitic Stainless Steel, Mater. Sci. Eng., A, 2018, 736, p 364–374.

    Article  CAS  Google Scholar 

  38. Y. Lv, H. Luo, J. Tang, J. Guo, J. Pi and K. Ye, Corrosion Properties of Phase Reversion Induced Nano/Ultrafine Grained AISI 304 Metastable Austenite Stainless Steel, Mater. Res. Bull., 2018, 107, p 421–429.

    Article  CAS  Google Scholar 

  39. D. Xu, G. Li, X. Wan, R. Misra, X. Zhang, G. Xu and K. Wu, The Effect of Annealing on the Microstructural Evolution and Mechanical Properties in Phase Reversed 316LN Austenitic Stainless Steel, Mater. Sci. Eng., A, 2018, 720, p 36–48.

    Article  CAS  Google Scholar 

  40. L. Jinlong and L. Hongyun, Comparison of Corrosion Properties of Passive Films Formed on Phase Reversion Induced Nano/Ultrafine-Grained 321 Stainless Steel, Appl. Surf. Sci., 2013, 280, p 124–131.

    Article  Google Scholar 

  41. M. Eskandari, M. Yeganeh and M. Motamedi, INVESTIGATION in the Corrosion Behaviour of Bulk Nanocrystalline 316L Austenitic Stainless Steel in NaCl Solution, Micro & Nano Letters, 2012, 7, p 380–383.

    Article  Google Scholar 

  42. J. Talonen, H. Hänninen, P. Nenonen and G. Pape, Effect of Strain Rate on the Strain-Induced γ→ α′-Martensite Transformation and Mechanical Properties of Austenitic Stainless Steels, Metall. and Mater. Trans. A., 2005, 36, p 421–432.

    Article  Google Scholar 

  43. G. Sun, L. Du, J. Hu and R. Misra, Microstructural Evolution and Recrystallization Behavior of Cold Rolled Austenitic Stainless Steel with Dual Phase Microstructure During Isothermal Annealing, Mater. Sci. Eng., A, 2018, 709, p 254–264.

    Article  CAS  Google Scholar 

  44. G. Korznikova, S. Mironov, T. Konkova, A. Aletdinov, R. Zaripova, M. Myshlyaev and S. Semiatin, EBSD Characterization of Cryogenically Rolled Type 321 Austenitic Stainless Steel, Metall. and Mater. Trans. A., 2018, 49, p 6325–6336.

    Article  CAS  Google Scholar 

  45. 45.S.G. Chowdhury, P. Sahu, B. Mahato, P. De, Evolution of recrystallization texture in AISI300 series austenitic stainless steels after cold rolling to large strain, Microstructure and Texture in Steelsed., Springer, 2009, p 361–378

  46. B.R. Kumar, B. Mahato, N. Bandyopadhyay and D.K. Bhattacharya, Comparison of Rolling Texture in Low and Medium Stacking Fault Energy Austenitic Stainless Steels, Mater. Sci. Eng., A, 2005, 394, p 296–301.

    Article  Google Scholar 

  47. M. Nezakat, H. Akhiani, M. Hoseini and J. Szpunar, Effect of Thermo-Mechanical Processing on Texture Evolution in Austenitic Stainless Steel 316L, Mater. Charact., 2014, 98, p 10–17.

    Article  CAS  Google Scholar 

  48. C. Donadille, R. Valle, P. Dervin and R. Penelle, Development of Texture and Microstructure During Cold-Rolling and Annealing of FCC Alloys: Example of an Austenitic Stainless Steel, Acta. Metall., 1989, 37, p 1547–1571.

    Article  CAS  Google Scholar 

  49. B.R. Kumar, A. Singh, S. Das and D. Bhattacharya, Cold Rolling Texture in AISI 304 Stainless Steel, Mater. Sci. Eng., A, 2004, 364, p 132–139.

    Article  Google Scholar 

  50. X. Wang, Z. Liu and Y. Qi, A Study on the Static Recrystallization Behavior of an Ultrahigh-Strength Stainless Steel, Mater. Res. Express, 2021, 8(5), p 056504.

    Article  CAS  Google Scholar 

  51. A. Tiamiyu, A. Odeshi and J. Szpunar, Austenitic Reversion of Cryo-rolled Ti-Stabilized Austenitic Stainless Steel: High-Resolution EBSD Investigation, J. Mater. Eng. Perform., 2018, 27, p 889–904.

    Article  CAS  Google Scholar 

  52. M. Eskandari, M. Mohtadi-Bonab, R. Basu, M. Nezakat, A. Kermanpur, J. Szpunar, S. Nahar and A. Baghpanah, Preferred Crystallographic Orientation Development in Nano/Ultrafine-Grained 316L Stainless Steel During Martensite to Austenite Reversion, J. Mater. Eng. Perform., 2015, 24, p 644–653.

    Article  CAS  Google Scholar 

  53. M. Yeganeh, M. Eskandari and S. Alavi-Zaree, A Comparison Between Corrosion Behaviors of Fine-Grained And Coarse-Grained Structures of High-Mn Steel in NaCl Solution, J. Mater. Eng. Perform., 2017, 26, p 2484–2490.

    Article  CAS  Google Scholar 

  54. A. Hamada, P. Sahu, S.G. Chowdhury, L. Karjalainen, J. Levoska and T. Oittinen, Kinetics of the γ→ ε Martensitic Transformation in Fine-Grained Fe-26Mn-0.14 C Austenitic Steel, Metall. Mater Transact A, 2008, 39(2), p 462–465.

    Article  Google Scholar 

  55. H.F.G.S.S.P.R.P.V.N.P.M.O.S.S.M. AbreuCarvalhoLima NetoSantosFreireSilva, Tavares, Deformation Induced Martensite in an AISI 301LN Stainless Steel: Characterization and Influence on Pitting Corrosion Resistance, Mater. Res, 2007, 10(4), p 359–366.

    Article  Google Scholar 

  56. H. Luo, H. Su, G. Ying, C. Dong and X. Li, Effect of Cold Deformation on the Electrochemical Behaviour of 304L Stainless Steel in Contaminated Sulfuric Acid Environment, Appl. Surf. Sci., 2017, 425, p 628–638.

    Article  CAS  Google Scholar 

  57. M. Eskandari, A. Kermanpur and A. Najafizadeh, Formation of Nanocrystalline Structure in 301 Stainless Steel Produced by Martensite Treatment, Metall. and Mater. Trans. A., 2009, 40, p 2241–2249.

    Article  Google Scholar 

  58. G. Monrrabal, A. Bautista, S. Guzman, C. Gutierrez and F. Velasco, Influence of the Cold Working Induced Martensite on the Electrochemical Behavior of AISI 304 Stainless Steel Surfaces, J. Market. Res., 2019, 8, p 1335–1346.

    CAS  Google Scholar 

  59. X. Deng, M. Cheng, S. Zhang, H. Song and M.A. Taha, Residual Stresses and Martensite Transformation in AISI 304 Austenitic Stainless Steel, Mater. Res. Express, 2018, 6, 016503.

    Article  Google Scholar 

  60. J. Talonen and H. Hänninen, Formation of Shear Bands and Strain-Induced Martensite During Plastic Deformation of Metastable Austenitic Stainless Steels, Acta Mater., 2007, 55, p 6108–6118.

    Article  CAS  Google Scholar 

  61. B. Roy, R. Kumar and J. Das, Effect of Cryorolling on the Microstructure and Tensile Properties of Bulk Nano-Austenitic Stainless Steel, Mater. Sci. Eng., A, 2015, 631, p 241–247.

    Article  CAS  Google Scholar 

  62. M. Klimova, S. Zherebtsov, N. Stepanov, G. Salishchev, C. Haase and D. Molodov, Microstructure and Texture Evolution of a High Manganese TWIP Steel During Cryo-Rolling, Mater. Charact., 2017, 132, p 20–30.

    Article  CAS  Google Scholar 

  63. C. Singh, V. Ramaswamy and C. Suryanarayana, Texture Evolution in a Hot Rolled Austenitic Stainless Steel, Text. Microstruct, 1970, 13(4), p 227–241.

    Article  Google Scholar 

  64. M.Y. Maeda, J.J.H. Quintero, M.T. Izumi, M.F. Hupalo, and O.M. Cintho, Study of Cryogenic Rolling of FCC Metals with Different Stacking Fault Energies, Mater. Res., 2017, 20, p 716–721.

    Article  Google Scholar 

  65. D. Panov, E. Kudryavtsev, R. Chernichenko, A. Smirnov, N. Stepanov, Y. Simonov, S. Zherebtsov, and G. Salishchev, Mechanisms of the Reverse Martensite-to-Austenite Transformation in a Metastable Austenitic Stainless Steel, Metals, 2021, 11, p 599.

    Article  CAS  Google Scholar 

  66. K. Guy, E. Butler, and D. West, Reversion of bcc α′ Martensite in Fe Cr Ni Austenitic Stainless Steels, Metal. sci, 1983, 17, p 167–176.

    Article  CAS  Google Scholar 

  67. M. Somani, P. Juntunen, L. Karjalainen, R. Misra, and A. Kyröläinen, Enhanced Mechanical Properties Through Reversion in Metastable Austenitic Stainless Steels, Metall. Mater. Trans. A., 2009, 40, p 729–744.

    Article  Google Scholar 

  68. R.P. De Siqueira, H.R.Z. Sandim, and D. Raabe, Particle Stimulated Nucleation in Coarse-Grained Ferritic Stainless Steel, Metall. and Mater. Trans. A., 2013, 44, p 469–478.

    Article  CAS  Google Scholar 

  69. M. Salehi, M. Yeganeh, R.B. Heidari, and M. Eskandari, Comparison of the Microstructure, Corrosion Resistance, and Hardness of 321 and 310 s Austenitic Stainless Steels After Thermo-Mechanical Processing, Mate. Today. Commun., 2022, 31, p 103638.

    Article  CAS  Google Scholar 

  70. M.H. Farshidi, H. Doryo, M. Yuasa, and H. Miyamoto, Formation of Micro Shear Bands During Severe Plastic Deformation of BCC Alloys, J. Stress. Anal, 2018, 3, p 47–51.

    Google Scholar 

  71. F. Mubarok and A. Rosalina, Effect of Thermal Cycling on the Cold Rolled AISI 316L with Varying Degree of Reduction Toward their Microstructure and Hardness, IOP Conf. Ser.: Mater. Sci. Eng., 2021, 1034(1), p 0121.

    Article  Google Scholar 

  72. Z.-S. Nie, X.-Q. Tian, H.-F. Zhou, and C.-L. Zhou, Relationship between tensile strength and cold-rolled hardness of 301 austenitic stainless steel sheet. J. Iron. Steel. Res. 2012 24(4)

  73. C.-L. Zhou, H.-M. Liu, J.-G. Bai, Z.-S. Nie, H.-F. Zhou, and J.-W. Qiao, Effects of the Cold-Rolled Reduction on the Mechanical Properties of 304 Austenitic Stainless Steel Sheets, Iron. Steel. Gangtie, 2012, 47, p 70–75.

    CAS  Google Scholar 

  74. M. Shirdel, H. Mirzadeh, and M.H. Parsa, Enhanced Mechanical Properties of Microalloyed Austenitic Stainless Steel Produced by Martensite Treatment, Adv. Eng. Mater., 2015, 17, p 1226–1233.

    Article  CAS  Google Scholar 

  75. M. Naghizadeh and H. Mirzadeh, Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel, Metall. and Mater. Trans. A., 2018, 49, p 2248–2256.

    Article  CAS  Google Scholar 

  76. S. Kheiri, H. Mirzadeh, and M. Naghizadeh, Tailoring the Microstructure and Mechanical Properties of AISI 316L Austenitic Stainless Steel via Cold Rolling and Reversion Annealing, Mater. Sci. Eng., A, 2019, 759, p 90–96.

    Article  CAS  Google Scholar 

  77. K. Al-Fadhalah and M. Aleem, Microstructure Refinement and Mechanical Properties of 304 Stainless Steel by Repetitive Thermomechanical Processing, Metall. and Mater. Trans. A., 2018, 49, p 1121–1139.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Shahid Chamran University of Ahvaz, Ahvaz, Iran, for financially supporting this research with a grant (#SCU.EM1400.30796). In addition, the authors wish to express their gratitude to Professor Jerzy Szpunar for their support and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eskandari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, M., Eskandari, M. & Yeganeh, M. Characterizations of the Microstructure and Texture of 321 Austenitic Stainless Steel After Cryo-Rolling and Annealing Treatments. J. of Materi Eng and Perform 32, 816–834 (2023). https://doi.org/10.1007/s11665-022-07127-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07127-2

Keywords

Navigation