Skip to main content
Log in

Additively Manufactured O-rings: Tensile Strength and Swelling Behavior in the Presence of Gasoline and Surrogate Mixtures

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This work investigates the swelling and physical properties of additively manufactured (AM) acrylate and traditionally manufactured (TM) O-rings when exposed to gasoline and organic mixtures. Fuel chemical compositions were determined using gas chromatography/mass spectrometry. Polymer properties were found using differential scanning calorimetry, thermal gravimetric analysis, and tensile testing. Exposure to gasoline for 24 h caused the AM and TM O-ring to lose from 54 to 80% of their unexposed failure strength. AM O-ring failure strength varied more (~ 20%) than TM O-rings (~ 7%). AM O-rings swelled from 46 to 110% with greater swelling in E10 than in E85 or ethanol-free gasolines. Volume changes ranged from −5 to 175% for commercial polymers. Aromatic compounds increased O-ring swelling. For ternary mixtures with 30% toluene, decane, and ethanol, increasing the ethanol up to mass 35% increased the swelling from 30 to 100 vol.%, after which the swelling remained level. Subsequent fuel evaporation from the polymers returned most of them to their original size and tensile strength, suggesting that the 24-h exposure caused no permanent damage. One AM O-ring exposed to 30% toluene/70% ethanol showed visible structural changes accompanied by a tensile strength less than half that of those with no visible changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. A.A. Rousaili, A.S.A. Nor, S.M. Nazry and K.A. Nihla, Determination of Structural and Dimensional Changes of O-ring Polymer/Rubber Seals Immersed in Oils, Int. J. Civ. Environ. Eng., 2010, 10, p 1–15.

    Google Scholar 

  2. M. Romanczyk, J.H. Ramirez Velasco, L. Xu, P. Vozka, P. Dissanayake, K.E. Wehde, N. Roe, E. Keating, G. Kilaz, R.W. Trice, D.J. Luning Prak and H. Kenttӓmaa, The Capability of Organic Compounds to Swell Acrylonitrile Butadiene O-rings and Their Effects on O-ring Mechanical Properties, Fuel, 2019, 238, p 483–492.

    Article  CAS  Google Scholar 

  3. I.A. Abu-Isa, Elastomer—Gasoline Blends Interactions II. Effects of Ethanol/Gasoline and Methyl-t-Butyl Ether/Gasoline Mixtures on Elastomers, Rubber Chem. Technol., 1983, 56, p 169–196.

    Article  CAS  Google Scholar 

  4. I.A. Abu-Isa, Elastomer—Gasoline Blends Interactions I. Effects of Methanol/Gasoline and Mixtures on Elastomers, Rubber Chem. Technol., 1983, 56, p 135–168.

    Article  CAS  Google Scholar 

  5. M. Kass, C. Janke, M. Connatser and B. West, Olubility and Volume Swell of Fuel System Elastomers with Ketone Blends of E10 Gasoline and Blendstock for Oxygenate Blending (BOB), J. Elastomers Plast., 2020, 52, p 645–663.

    Article  CAS  Google Scholar 

  6. R. Su, G. Liu, H. Sun and Z. Yong, A New Method to Measure the Three-Dimensional Solubility Parameters of Acrylate Rubber and Predict its Oil Resistance, Polym. Bull., 2022, 79, p 971–984.

    Article  CAS  Google Scholar 

  7. Expert Knowledge Test Procedures of Elastomer Components. O-ring Prüflabor Richter. 2019, p 1–13 https://www.O-ring-prueflabor.de/files/expert_knowledge_-_tensile_set_06_2014_.pdf, accessed 03/22/22

  8. B.K. Saleh, S.N. Lawandy, F. Abdel-Hai and A. Albdel-Hakim, Effect of Carboxyl Cure Site Source Variation on the Mechanical and Swelling Properties of Acrylic Rubber, J. Chem. Chem. Sci., 2016, 6, p 726–735.

    Google Scholar 

  9. H. Gojzewski, Z. Guo, W. Grzelachowska, M.G. Ridwan, M.A. Hempenius, D.W. Grijpma and G.J. Vancso, Layer-by-Layer Printing of Photopolymers in 3D: How Weak is the Interface?, ACS Appl. Mater. Interfaces, 2020, 12, p 8908–8914.

    Article  CAS  Google Scholar 

  10. M. Ramesh, L. Rajeshkumar and D. Balaji, Influence of Process Parameters on the Properties of Additively Manufactured Fiber-Reinforced Polymer Composite Materials: A Review, J. Mat. Eng. Perform., 2021, 30, p 4792–1024.

    Article  CAS  Google Scholar 

  11. 10. D. Luning Prak, N. Adams, J. Cowart, J. Schubbe, B. Baker. Swelling Behavior and Tensile Strength of Additively Manufactured and Commercial O-ring in the Presence of Linear, Branched, Cyclic, and Aromatic Compounds and Alcohols, J. Elastomers Plastics, in press, processing DOI https://doi.org/10.1177/00952443221104105.

  12. D. Bourell, J.P. Kruth, M. Leu, G. Levy, D. Rosen, A.M. Beeze and A. Clare, Materials for Additive Manufacturing, CIRP Ann-Manuf. Technol., 2017, 66, p 659–681.

    Article  Google Scholar 

  13. A. Vitale, M. Quaglio, A. Chiodoni, K. Bejtka, C. Matteo, C.F. Pirri and R. Bongiovanni, Oxygen-Inhibition Lithography for the Fabrication of Multipolymeric Structures, Adv. Mater., 2015, 27, p 4560–4565.

    Article  CAS  Google Scholar 

  14. D. Lin, S. Jin, F. Zhang, C. Wang, Y. Wang, C. Zhuo and G.J. Cheng, 3D Stereolithography Printing of Graphene Oxide Reinforced Complex Architectures, Nanotechnology, 2015, 26, p 434003.

    Article  Google Scholar 

  15. C. Hu, M.S. Haider, L. Hahn, M. Yang and R. Luxenhofer, Development of a 3D Printable and Highly Stretchable Ternary Organic-Inorganic Nanocomposite Hydrogel, J. Mater. Chem. B, 2021, 9, p 4535–4545.

    Article  CAS  Google Scholar 

  16. R. Hu, B. Huang, Z. Xue, Q. Li, T. Xia, W. Zhang, C. Lu and H. Xu, Synthesis of Photocurable Cellulose Acetate Butyrate Resin for Continuous Liquid Interface Production of Three-Dimensional Objects with Excellent Mechanical and Chemical-Resistant Properties, Carbohydr. Polym., 2019, 207, p 609–618.

    Article  CAS  Google Scholar 

  17. Form Labs, Engineering Resin Flexible 80A, https://formlabs-media.formlabs.com/datasheets/2001418-TDS-ENUS-0.pdf, accesssed 03/22/22.

  18. Parker Hannifin. Parker Hannifin Corporation, 2021, Parker O-ring Handbook ORD 5700, https://www.parker.com/Literature/O-ring%20Division%20Literature/ORD%205700.pdf, accesssed 03/22/22.

  19. ASTM. Standard Test Method for Rubber Property-Effect of Liquids, D471–16a; ASTM International: West Conshohocken, PA, 2021

  20. ASTM. Standard Test Method for Rubber O-rings, D1414–15; ASTM International: West Conshohocken, PA, 2021

  21. M.L. Botero, S. Mosbach and M. Kraft, Sooting Tendency and Particle Size Distributions of n-Heptane/Toluene Mixtures Burned in a Wick-Fed Diffusion Flame, Fuel, 2016, 169, p 111–119.

    Article  CAS  Google Scholar 

  22. A.Y.E. Naggar, A. Elkhateeb, T.A. Altalhi, M.M. El Nady, A. Alhadhrami, M.A. Ebiad, A.A. Salem and S.B. Elhardallou, Hydrocarbon Compositions and Physicochemical Characteristics for the Determination of Gasoline Quality: An Implication from Gas Chromatographic Fingerprints, Energy Source Part A, 2017, 39, p 1694–1699.

    Google Scholar 

  23. E.W. de Menezes, R. Cataluña, D. Samios and R. da Silva, Addition of an Azeotropic ETBE/Ethanol Mixture in Eurosuper-Type Gasolines, Fuel, 2006, 85, p 2567–2577.

    Article  Google Scholar 

  24. C. Hansen, Hansen Solubility Parameters: A User’s Handbook, 2nd ed. Taylor and Francis Group, CRC Press, Boca Raton, FL, 2007.

    Book  Google Scholar 

  25. J. Lara, F. Zimmerermann, D. Drolet, C.M. Hansen, A. Chollot and N. Monta, The Use of the Hansen Solubillity Parameters in the Selection of Protective Polymeric Materials Resistant to Chemicals, Internat. J. Current Res., 2017, 9, p 47860–47867.

    CAS  Google Scholar 

  26. L.I. Farfan-Cabrera, J. Pérez-González and E.A. Gallardo-Hernández, Solubility Analysis of Elastomers in a Bio-based lubricant Using Hansen Parameters, Mater. Res. Express, 2019, 6, p 015311.

    Article  Google Scholar 

  27. A. C. M. Kuo, In Polymer Data Handbook; Mark, J. E., Ed.; Oxford University Press: New York, 2009, p 539–561

  28. E.T. Zellers, D.H. Anna, R. Sulewski and X. Wei, Improved Methods for the Determinations of Hansen’s Solubility Parameters and the Estimations of Solvent Uptake for Lightly Crosslinked Polymers, J. Appl. Polym. Sci., 1996, 62, p 2081–2096.

    Article  CAS  Google Scholar 

  29. D. L. Hertz, SE Ling High Pressures under Sour Conditions,. https://www.sealseastern.com/PDF/SealingSourHP.pdf.

  30. L. S. Ramanathan, S. Sivaram, M. K. Mishra, In Polymer Data Handbook; Mark, J. E., Ed.; Oxford University Press, 2009, p 1093–1096

  31. T.B. Nielsen and C.M. Hansen, Elastomer Swelling and Hansen Solubility Parameters, Polym. Test, 2005, 24, p 1054–1061.

    Article  CAS  Google Scholar 

  32. W. Brostow, T. Dataschvili, G. W. Ver Strate, D. J. Lohse, In Polymer Data Handbook, 2nd ed.; Mark, J. E., Ed.; Oxford University Press: New York, 2009, p 155–162

  33. A. Bagheri and J. Jin, Photopolymerization in 3D Printing, ACS Appl. Polymer Mater., 2019, 1, p 593–611.

    Article  CAS  Google Scholar 

  34. D.P. Durkin, M.J. Gallagher, B.P. Frank, E.D. Knowlton, P.C. Trulove, D.H. Fairbrother and D.M. Fox, Phosphorus-Functionalized Multi-wall Carbon Nanotubes as Flame-Retardant Additives for Polystyrene and Poly (Methyl Methacrylate), J. Therm. Anal. Calorim., 2017, 130, p 735–753.

    Article  CAS  Google Scholar 

  35. E. Corporan, T. Edwards, L. Shafer, M.J. DeWitt, C. Klingshirn, S. Zabarnick, Z. West, R. Striebich, J. Graham and J. Klein, Chemical, Thermal Stability, Seal Swell, and Emissions Studies of Alternative Jet Fuels, Energy Fuels, 2011, 25, p 955–966.

    Article  CAS  Google Scholar 

  36. G.W. Lawless, A.K. Behme, R.P. Mortimer, H.W. Polley and T.H. Wical, Volume Swell and Elastomeric Seal Hydraulic Fluid Compatibility, Elastomerics, 1984, 116, p 22–25.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Northrup Grumman. The authors thank Mr. Andrew Pullen for making the tensile tester O-ring half-shell apparatus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianne J. Luning Prak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, N.J., Baker, B.W., VanBriesen, J.L. et al. Additively Manufactured O-rings: Tensile Strength and Swelling Behavior in the Presence of Gasoline and Surrogate Mixtures. J. of Materi Eng and Perform 32, 803–815 (2023). https://doi.org/10.1007/s11665-022-07124-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07124-5

Keywords

Navigation