Skip to main content
Log in

Prediction of Dynamically Recrystallized Microstructure of AZ31 Magnesium Alloys in Hot Rolling Using an Expanded Dislocation Density Model

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Microstructure simulation has been greatly expanded in recent years, particularly for the purpose of microstructural prediction and understanding mechanisms of microstructural evolution in thermal-mechanical processes. The application of microstructure simulation to hot rolling of magnesium alloy sheets will bring a great economic benefit. In this study, a multi-scale coupled dislocation density model of magnesium alloys was developed for predicting the microstructures of rolled AZ31 sheets. The simulations were performed by inserting the expanded dislocation density model into a VUSDFLD subroutine of ABAQUS software. The effects of rolling temperature and speed on dislocation densities of low angle grain boundary and high angle grain boundary and dynamic recrystallization (DRX) volume fraction were investigated by finite element simulations. The simulation results show that the dislocation densities of the high angle grain boundary and low angle grain boundary increase rapidly at the first rolling stage, but decrease slightly with rolling time. The changes of dislocation densities with the rolling time are complicated, which are influenced by an integrated mechanism of work-hardening, dynamic recovery and DRX. The dislocation densities can achieve the highest value when the rolling temperature is in range of 400-450 °C. Moreover, the DRX volume fraction is the largest in the surface layer and the smallest in the center layer of the rolled sheets. This is resulted from the distributions of rolling temperature, rolling strain and strain rate from the surface to the center of the rolled sheets. Rolling force decreases with the rolling temperature but increases slightly with the rolling speed. The predicted rolling forces are good in agreement with those of the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Mordike and T. Ebert, Magnesium: Properties-Applications-Potential, Mat. Sci. Eng. A, 2001, 302, p 37–45. https://doi.org/10.1016/S0921-5093(00)01351-4

    Article  Google Scholar 

  2. L. Guo and F. Fujita, Influence of Rolling Parameters on Dynamically Recrystallized Microstructures in AZ31 Magnesium Alloy Sheets, J. Magnes. Alloy., 2015, 3(2), p 95–105. https://doi.org/10.1016/j.jma.2015.04.004

    Article  CAS  Google Scholar 

  3. W. Jia, L. Ma, Q. Le, C. Zhi and P. Liu, Deformation and Fracture Behaviors of AZ31B Mg Alloy at Elevated Temperature Under Uniaxial Compression, J. Alloy. Comp., 2018, 783, p 863–876. https://doi.org/10.1016/j.jallcom.2018.12.260

    Article  CAS  Google Scholar 

  4. J. Amjad and C. Frank, Effect of Hot Rolling on Microstructure and Properties of the ZEK100 Alloy, J. Magnes. Alloy., 2019, 7(1), p 27–37. https://doi.org/10.1016/j.jma.2019.02.001

    Article  CAS  Google Scholar 

  5. Q. Fan, H. Xu, L. Ma, W. Jia, Z. Huang, G. Liu, J. Lin and D. Fang, Analysis of Hot Rolling Routes of AZ31B Magnesium Alloy and Prediction of Tensile Property of Hot-Rolled Sheets, J. Wuhan Univ. Technol. (Materials Science), 2017, 32(02), p 451–458. https://doi.org/10.1007/s11595-017-1618-6

    Article  CAS  Google Scholar 

  6. Y. Ji, J. Duan, H. Li, Y. Liu, W. Peng and L. Ma, Improvement of Edge Crack Damage of Magnesium Alloy by Optimizing the Edge Curve During Cross Variable Thickness Rolling, Int. J Adv. Manuf. Tech., 2021, 112(7), p 1993–2002. https://doi.org/10.1007/s00170-020-06517-x

    Article  Google Scholar 

  7. Z. Su, C. Sun, M. Wang, L. Qian and X. Li, Modeling of Microstructure Evolution of AZ80 Magnesium Alloy During Hot Working Process Using a Unified Internal State Variable Method, J. Magnes. Alloy., 2022, 10(1), p 281–294. https://doi.org/10.1016/j.jma.2021.07.022

    Article  CAS  Google Scholar 

  8. W. Xu, C. Yuan, H. Wu, Z. Yang, G. Yang, D. Shan, B. Guo and B. Jin, Modeling of Flow Behavior and Microstructure Evolution for Mg-6Gd-5Y-0.3Zr Alloy During Hot Deformation Using a Unified Internal State Variable Method, J. Mater. Res. Technol., 2020, 9(4), p 7669–7685. https://doi.org/10.1016/j.jmrt.2020.04.099

    Article  CAS  Google Scholar 

  9. U. Chaudry, T. Kim, S. Ye, K. Hamad and J. Kim, Dynamic Recrystallization Behavior of AZ31-05Ca Magnesium Alloy During Warm Rolling, Mat. Sci. Eng. A, 2019, 762, p 138085. https://doi.org/10.1016/j.msea.2019.138085

    Article  CAS  Google Scholar 

  10. A. Rv, B. Rj, A. Skn and C. As, Influence of Hot Rolling and Evolved Microstructure on High Cycle Fatigue Behaviour of Mg-4Zn-4Gd Alloy, Mater. Charact., 2020, 160, 110048. https://doi.org/10.1016/j.matchar.2019.110048

    Article  CAS  Google Scholar 

  11. A. Sadeghi, H. Mortezapour, J. Samei, M. Pekguleryuz and D. Wilkinson, Anisotropy of Mechanical Properties and Crystallographic Texture in Hot Rolled AZ31+XSr Sheets, J. Magnes. Alloy., 2019, 7(3), p 466–473. https://doi.org/10.1016/j.jma.2019.04.005

    Article  CAS  Google Scholar 

  12. X. Liu, Q. Wan, H. Yang, B. Zhu, Y. Wu, W. Liu and C. Tang, The Effect of Twins on Mechanical Properties and Microstructural Evolution in az31 Magnesium Alloy During High Speed Impact Loading, J. Mater. Eng. Perform., 2021 https://doi.org/10.1007/s11665-021-06384-x

    Article  Google Scholar 

  13. K. Tam, M. Vaughan, L. Shen, M. Knezevic, I. Karaman and G. Proust, Modelling Dynamic Recrystallisation in Magnesium Alloy AZ31, Int. J. Plast., 2021, 142, 102995. https://doi.org/10.1016/j.ijplas.2021.102995

    Article  CAS  Google Scholar 

  14. J. Liao, L. Zhang, H. Xiang and X. Xue, Mechanical Behavior and Microstructure Evolution of AZ31 Magnesium Alloy Sheet in an Ultrasonic Vibration-Assisted Hot Tensile Test, J. Alloys Compd., 2022, 895, 162575. https://doi.org/10.1016/j.jallcom.2021.162575

    Article  CAS  Google Scholar 

  15. H. Aghamohammadi, S. Hosseinipour, S. Rabiee and R. Jamaati, Effect of Hot Rolling on Microstructure, Crystallographic Texture, and Hardness of AZ31 Alloy, Mater. Chem. Phys., 2021, 273(15), p 125130. https://doi.org/10.1016/j.matchemphys.2021.125130

    Article  CAS  Google Scholar 

  16. O. Sitdikov and R. Kaibyshev, Dynamic Recrystallization in Pure Magnesium, Mater. Trans., 2005, 42(9), p 1928–1937. https://doi.org/10.2320/matertrans.42.1928

    Article  Google Scholar 

  17. A. Galiyev, R. Kaibyshev and G. Gottstein, Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy Zk60, Acta Mater., 2001, 49(7), p 1199–1207. https://doi.org/10.1016/S1359-6454(01)00020-9

    Article  CAS  Google Scholar 

  18. F.J. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, Elsevier, Oxford, 2004, p 1–574

    Book  Google Scholar 

  19. S. Ion, F. Humphreys and S. White, Dynamic Recrystallization and the Development of Microstructure During the High-Temperature Deformation of Magnesium, Acta Metall., 1982, 30(10), p 1909–1919. https://doi.org/10.1016/0001-6160(82)90031-1

    Article  CAS  Google Scholar 

  20. K. Huang and R. Log, A Review of Dynamic Recrystallization Phenomena in Metallic Materials, Mater. Design, 2016, 111, p 548–574. https://doi.org/10.1016/j.matdes.2016.09.012

    Article  CAS  Google Scholar 

  21. S. Gourdet, F. Montheillet and A. Mwenmbela, A Model of Continuous Dynamic Recrystallization, Acta Mater., 2003, 51(9), p 2685–2699. https://doi.org/10.1016/S1359-6454(03)00078-8

    Article  CAS  Google Scholar 

  22. H. Parvin and M. Kazeminezhad, Development a Dislocation Density Based Model Considering the Effect of Stacking Fault Energy: Severe Plastic Deformation, Comp. Mater. Sci., 2014, 95, p 250–255. https://doi.org/10.1016/j.commatsci.2014.07.027

    Article  CAS  Google Scholar 

  23. H. Dini, A. Svoboda, N. Andersson, E. Ghassemali, L. Lindgren, A. Jarfors, A. Jarfors, L. Lindgren, A. Svoboda, N. Andersson and H. Dini, Optimization and Validation of a Dislocation Density Based Constitutive Model for As-Cast Mg-9%Al-1%Zn, Mat. Sci. Eng. A, 2018, 710, p 17–26. https://doi.org/10.1016/j.msea.2017.10.081

    Article  CAS  Google Scholar 

  24. X. Liu, L. Li, F. He, J. Zhou, B. Zhu and L. Zhang, Simulation on Dynamic Recrystallization Behavior of AZ31 Magnesium Alloy Using Cellular Automaton Method Coupling Laasraoui-Jonas Model, T. Nonferr. Metal. Soc., 2013, 23(9), p 2692–2699. https://doi.org/10.1016/S1003-6326(13)62786-7

    Article  CAS  Google Scholar 

  25. Y. He, Q. Pan, Q. Chen, Z. Zhang, X. Liu and W. Li, Modeling of Strain Hardening and Dynamic Recrystallization of ZK60 Magnesium Alloy During Hot Deformation, T. Nonferr. Metal. Soc., 2012, 22(2), p 246–254. https://doi.org/10.1016/S1003-6326(11)61167-9

    Article  CAS  Google Scholar 

  26. L. Guo and F. Fujita, Modeling the Microstructure Evolution in AZ31 Magnesium Alloys During Hot Rolling, J. Mater. Process. Technol., 2018, 255, p 716–723. https://doi.org/10.1016/j.jmatprotec.2018.01.025

    Article  CAS  Google Scholar 

  27. J. Wang, L. Guo and C. Wang, Dislocation Density Model of AZ31 Magnesium Alloy and Microstructure Prediction of Thermal Compression, Chin. J. Nonfer. Met., 2020, 30(1), p 48–59.

    Google Scholar 

  28. D. Zhao and W. Tie, A Precise Method of Calculating the Parameter ε the Mean Strain Rate in Rolling, J. Appl. Sci., 1995, 13(1), p 103–108.

    Google Scholar 

  29. L. Hu, Y. Peng, D. Li and S. Zhang, Influence of Dynamic Recrystallization on Tensile Properties of AZ31B Magnesium Alloy Sheet, Mater. Manuf. Process., 2010, 25(8), p 880–887. https://doi.org/10.1080/10426910903496805

    Article  CAS  Google Scholar 

  30. Z. Jin, K. Yin, K. Yan, D. Wu, J. Liu and Z. Cui, Finite Element Modelling on Microstructure Evolution During Multi-Pass Hot Compression for AZ31 Alloys Using Incremental Method, J. Mater. Sci. Technol., 2017, 33(11), p 1255–1262. https://doi.org/10.1016/j.jmst.2017.10.008

    Article  Google Scholar 

  31. L. Guo, F. Wang and J. Zhan, Experimental Studies and Finite Element Simulation on AZ31 Magnesium Alloy During Hot Rolling Based on Secondary Development, J. Plast. Eng., 2017, 24(06), p 48–54.

    Google Scholar 

  32. Z. Shan, J. Bai, J. Fan, H. Wu, H. Zhang, Q. Zhang, Y. Wu, W. Li, H. Dong and B. Xu, Exceptional Mechanical Properties of AZ31 Alloy Wire by Combination of Cold Drawing and EPT, J. Mater. Sci. Technol., 2020, 51, p 111–118. https://doi.org/10.1016/j.jmst.2020.02.044

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Liaoning Provincial Nature Science Foundation of China (grant number: 2019-MS-035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Magnesium. The issue was organized by Prof. C. (Ravi) Ravindran, Dr. Raja Roy, Mr. Payam Emadi, and Mr. Bernoulli Andilab, Ryerson University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Guo, L., Wang, C. et al. Prediction of Dynamically Recrystallized Microstructure of AZ31 Magnesium Alloys in Hot Rolling Using an Expanded Dislocation Density Model. J. of Materi Eng and Perform 32, 2607–2615 (2023). https://doi.org/10.1007/s11665-022-07086-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07086-8

Keywords

Navigation