Skip to main content
Log in

As-Cast High Entropy Shape Memory Alloys of (TiHfX)50(NiCu)50 with Large Recoverable Strain and Good Mechanical Properties

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The proposal of a high entropy shape memory alloy (HESMA) has opened a new field for the application of high-entropy alloys (HEAs) and the development of shape memory alloys (SMAs). However, to date, the recoverable strains of reported HESMAs have been generally modest, and their preparation processes have been complex. In this work, novel as-cast (TiHfX)50(NiCu)50 HESMAs with a very large recoverable strain (9.4%) and excellent mechanical properties were fabricated. A lower elastic modulus and lattice distortion strengthening effect were considered to contribute to the large recoverable strain characteristics of HESMAs. The strategy of finding HESMAs with good comprehensive properties by designing low Cv values may provide useful guidelines in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.S. Firstov, T.A. Kosorukova, Y.N. Koval and V.V. Odnosum, High Entropy Shape Memory Alloys, Mater. Today Proc., 2015, 2S, p S499.

    Article  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.

    Article  CAS  Google Scholar 

  3. C.H. Chen, Y.J. Chen and J.J. Shen, Microstructure and Mechanical Properties of (TiZrHf)50(NiCoCu)50 High Entropy Alloys, Met. Mater. Int., 2020, 26, p 617.

    Article  CAS  Google Scholar 

  4. X.C Ye, Z.H. Cheng, C. Liu, X. Wu, L.E. Yu, M.Y. Liu, D. Fang, G.W Zhao, and B. Li, The Microstructure And Properties of Fe55Cr15Ni(30-x)Nbx Eutectic High-Entropy Alloys, Mater. Sci. Eng. A, 2022, 844, p 143026.

  5. T.A. Kosorukova, G. Gerstein, V.V. Odnosum, Y.N. Koval, H.J. Maier and G.S. Firstov, Microstructure Formation in Cast TiZrHfCoNiCu and CoNiCuAlGaIn High Entropy Shape Memory Alloys: A Comparison, Materials., 2019, 12, p 4227.

    Article  CAS  Google Scholar 

  6. G.S. Firstov, T.A. Kosorukova, Y.N. Koval and P.A. Verhovlyuk, Directions for High-Temperature Shape Memory Alloys’ Improvement: Straight Way to High-Entropy Materials?, Shap. Mem. Superelasticity., 2015, 1, p 400.

    Article  Google Scholar 

  7. J. Yaacoub, W. Abuzaid, F. Brenne and H. Sehitoglu, Superelasticity of (TiZrHf)50Ni25Co10Cu15 High Entropy Shape Memory Alloy, Scr. Mater., 2020, 186, p 43–47.

    Article  CAS  Google Scholar 

  8. H.C. Lee, Y.J. Chen, and C.H. Chen, Effect of Solution Treatment on the Shape Memory Functions of (TiZrHf)50Ni25Co10Cu15 High Entropy Shape Memory Alloy., Entropy, 2019, 21, p 1027.

  9. C.H. Chen and Y.J. Chen, Shape Memory Characteristics of (TiZrHf)50Ni25Co10Cu15 High Entropy Shape Memory Alloy, Scr. Mater., 2019, 162, p 185–189.

    Article  CAS  Google Scholar 

  10. S.H. Chang, P.T. Lin and C.W. Tsai, High-Temperature Martensitic Transformation of CuNiHfTiZr High-Entropy Alloys, Sci. Rep., 2019, 9, p 19598.

    Article  CAS  Google Scholar 

  11. S.H. Li, D.Y. Cong, Z. Chen, S.W. Li, C. Song, Y.X. Cao, Z.H. Nie and Y.D. Wang, A High-Entropy High-Temperature Shape Memory Alloy with Large and Complete Superelastic Recovery, Mater. Res. Lett., 2021, 9, p 263–269.

    Article  CAS  Google Scholar 

  12. S.H. Li, D.Y. Cong, X.M. Sun, Y. Zhang, Z. Chen, Z.H. Nie, R.G. Li, F.Q. Li, Y. Ren and Y.D. Wang, Wide-Temperature-Range Perfect Superelasticity and Giant Elastocaloric Effect in a High Entropy Alloy, Mater. Res. Lett., 2019, 7, p 482–498.

    Article  CAS  Google Scholar 

  13. D. Canadinc, W. Trehern, J. Ma, I. Karaman, F.P. Su and Z. Chaudhry, Ultra-High Temperature Multi-Component Shape Memory Alloys, Scr. Mater., 2019, 158, p 83–87.

    Article  CAS  Google Scholar 

  14. D. Piorunek, J. Frenzel, N. Jöns, C. Somsen and G. Eggeler, Chemical Complexity, Microstructure and Martensitic Transformation in High Entropy Shape Memory Alloys, Intermetallics, 2020, 122, 106792.

    Article  CAS  Google Scholar 

  15. D. Piorunek, O. Oluwabi, J. Frenzel, A. Kostka, H.J. Maier, C. Somsen and G. Eggeler, Effect of Off-Stoichiometric Compositions on Microstructures and Phase Transformation Behavior in Ni-Cu-Pd-Ti-Zr-Hf High Entropy Shape MemoryAlloys, J. Alloy. Compd., 2021, 857, 157467.

    Article  CAS  Google Scholar 

  16. L. Wang, C. Fu, Y.D. Wu, R.G. Li, X.D. Hui and Y.D. Wang, Superelastic Effect in Ti-rich High Entropy Alloys Via Stress-Induced Martensitic Transformation, Scr. Mater., 2019, 162, p 112–117.

    Article  CAS  Google Scholar 

  17. J.J. Gao, P. Castany and T. Gloriant, Synthesis and Characterization of a New TiZrHfNbTaSn High-Entropy Alloy Exhibiting Superelastic Behavior, Scr. Mater., 2021, 198, 113824.

    Article  CAS  Google Scholar 

  18. N. Hashimoto, Y.A. Zain, A. Yamamoto, T. Koyano, H.Y. Kim and S. Miyazaki, Ovel Beta-Type High Entropy Shape Memory Alloys with Low Magnetic Susceptibility and High Biocompatibility, Mater. Lett., 2021, 287, 129286.

    Article  CAS  Google Scholar 

  19. C.H. Chen, N.H. Lu, J.J. Shen and Y.J. Chen, Strain Glass and Stress-Induced Martensitic Transformation Characteristics of Ti40Zr10Ni40Co5Cu5 Multi-Principal Element Alloy, Scr. Mater., 2020, 186, p 127–131.

    Article  CAS  Google Scholar 

  20. R.E. Rajeshwar, K. Margarita, T. Mikhail, S. Nikita and Z. Sergey, Exceptionally High Strain-Hardening and Ductility due to Transformation Induced Plasticity Effect in Ti-rich High-Entropy Alloys, Sci. Rep., 2020, 10, p 13293.

    Article  Google Scholar 

  21. G.W. Zhao, J. Chen, C. Ding, D. Fang, C.H. Huang and X.C. Ye, Effect of Yttrium on the Microstructure, Phase Transformation and Superelasticity of a Ti-Ni-Cu Shape Memory Alloy, Vacuum, 2020, 177, 109381.

    Article  CAS  Google Scholar 

  22. G.W. Zhao, J. Chen, Y.S. Ye, C.H. Huang and X.C. Ye, Effect of Mo on the Microstructure and Superelasticity of Ti-Ni-Cu Shape Memory Alloys, JMEPEG, 2021, 30, p 617.

    Article  CAS  Google Scholar 

  23. S.H. Chang, W.P. Kao, K.Y. Hsiao, J.W. Yeh, M.Y. Lu, and C.W. Tsai, High-Temperature Shape Memory Properties of Cu15Ni35Ti25Hf12.5Zr12.5 High-Entropy Alloy, J. Mater. Res. Technol., 2021, 14, p 1235-1242.

  24. J.S. Kim, Y.J. Kim, W.C. Kim, W.T. Kim and D.H. Kim, Enhancement in Strength and Superelastic Cyclic Durability by Addition of Si in Ni-Ti-Cu-Zr Alloy, Intermetallics, 2020, 124, 106867.

    Article  CAS  Google Scholar 

  25. K.S. Sun, X.Y. Yi, B. Sun, W.H. Gao, H.Z. Wang, X.L. Meng, W. Cai and L.C. Zhao, The Effect of Hf on the Microstructure, Transformation Behaviors and the Mechanical Properties of Ti-Ni-Cu Shape Memory Alloys, J. Alloys. Compd., 2019, 772, p 603–611.

    Article  CAS  Google Scholar 

  26. G.C. Wang, K.P. Hu, Y.X. Tong, B. Tian, F. Chen, L. Li, Y.F. Zheng and Z.Y. Gao, Influence of Nb Content on Martensitic Transformation and Mechanical Properties of TiNiCuNb Shape Memory Alloys, Intermetallics, 2016, 72, p 30–35.

    Article  CAS  Google Scholar 

  27. J. Li, X.Y. Yi, K.S. Sun, B. Sun, W.H. Gao, H.Z. Wang, X.L. Meng and W.L. Song, The Effect of Zr on the Transformation Behaviors, Microstructure and the Mechanical Properties of Ti-Ni-Cu Shape Memory Alloys, J. Alloys. Compd., 2018, 747, p 348–353.

    Article  CAS  Google Scholar 

  28. W. Abuzaid and H. Sehitoglu, Superelasticity and Functional Fatigue of Single Crystalline FeNiCoAlTi Iron-Based Shape Memory Alloy, Mater. Design., 2018, 160, p 642–651.

    Article  CAS  Google Scholar 

  29. L.L. Pavón, E.L. Cuellar, S.V. Hernandez, I.E. Moreno-Cortez, H.Y. Kim and S. Miyazaki, Effect of Heat Treatment Condition on Microstructure and Superelastic Properties of Ti24Zr10Nb2Sn, J. Alloys. Compd., 2019, 782, p 893–898.

    Article  Google Scholar 

  30. K. Endoh, M. Tahara, T. Inamura and H. Hosoda, Effect of Sn and Zr Content on Superelastic Properties of Ti-Mo-Sn-Zr Biomedical Alloys, Mater. Sci. Eng. A, 2017, 704, p 72–76.

    Article  CAS  Google Scholar 

  31. S.Y. Yang, F. Zhang, J.L. Wu, Y. Lu, Z. Shi, C.P. Wang and X.Y. Liu, Superelasticity and shape memory effect in Cu-Al-Mn-V shape memory alloys, Mater. Design., 2017, 115, p 17–25.

    Article  CAS  Google Scholar 

  32. H.G. Armaki, A.C. Leff, M.L. Taheri, J. Dahal, M. Kamarajugadda and K.S. Kumar, Cyclic Compression Response of Micropillars Extracted from Textured Nanocrystalline NiTi Thin-Walled Tubes, Acta Mater., 2017, 136, p 134–147.

    Article  Google Scholar 

  33. P. Hua, K.J. Chu, F.Z. Ren and Q.P. Sun, Cyclic Phase Transformation Behavior of Nanocrystalline NiTi at Microscale, Acta Mater., 2020, 185, p 507–517.

    Article  CAS  Google Scholar 

  34. X.R. Chen, F. Zhang, M.Y. Chi, S.Y. Yang, C.P. Wang, X.J. Liu and S.S. Zheng, Microstructure, Superelasticity and Shape Memory Effect by Stress-Induced Martensite Stabilization in Cu-Al-Mn-Ti Shape Memory Alloys, Mater. Sci. Eng. A, 2018, 236–237, p 10–17.

    Article  Google Scholar 

  35. S.Y. Yang, M.Y. Chi, J.X. Zhang, K.X. Zhang, X.Y. Liu, C.P. Wang and X.J. Liu, Shape Memory Effect Promoted Through Martensite Stabilization Induced by the Precipitates in Cu-Al-Mn-Fe Alloys, Mater. Sci. Eng. A, 2019, 739, p 455–462.

    Article  CAS  Google Scholar 

  36. J. Chen, S.W. Zhang, Y.H. Zhang, J. Zhang, Y.H. Wen, Q. Yang, S.K. Huang and X.B. Wang, A Study on the Cold Workability and Shape Memory Effect of NiTiHf-Nb Eutectic High-Temperature Shape Memory Alloy, Intermetallics, 2020, 127, 106982.

    Article  CAS  Google Scholar 

  37. H. Chen, F. Xiao, X. Liang, Z.X. Li, X.J Jin, and T. Fukuda, Stable and Large Superelasticity and Elastocaloric Effect in Nanocrystalline Ti-44Ni-5Cu-1Al (at%) Alloy, Acta Mater., 2018, 158, p 330-339.

  38. H.E. Karaca, E. Acar, B. Basaran, R.D. Noebe, G. Bigelow, A. Garg, F. Yang, M.J. Millsd and Y.I. Chumlyakov, Effects of Aging on (Ref 1 1 1) Oriented NiTiHfPd Single Crystals Under Compression, Scr. Mater., 2012, 67, p 728–731.

    Article  CAS  Google Scholar 

  39. X.Y. Yi, G.J. Shen, X.L. Meng, H.Z. Wan, Z.Y. Gao, W. Cai and L.C. Zhao, The Higher Compressive Strength (TiB+La2O3)/Ti–Ni Shape Memory Alloy Composite with the Larger Recoverable Strain, Compos. Commun., 2021, 23, 100583.

    Article  Google Scholar 

  40. X.Y. Yi, X.L. Meng, W. Cai and L.C. Zhao, Larger Strain Recovery Characteristics of Ti-Ni-Hf Shape Memory Alloy Composite Under Compression, Scr. Mater., 2018, 153, p 90–93.

    Article  CAS  Google Scholar 

  41. Y. Zhao, F. Ming, N. Jia, J.H. Chen, S.B. Ren, W. Xu, X.H. Qu, High-Strength Superelastic As-Cast Ni50.9Ti49.1-TiB2 in-situ Composites, Mater. Sci. Eng. A, 2021, 818, p 141451.

  42. H. Sehitoglu, Y. Wu, L. Patriarca, G. Li, A. Ojha, S. Zhang, Y. Chumlyakov and M. Nishida, Superelasticity and Shape Memory Behavior of NiTiHf Alloys, Shap. Mem. Superelast., 2017, 3, p 168–187.

    Article  Google Scholar 

  43. S.M. Saghaian, H.E. Karaca, H. Tobe, A.S. Turabi, S. Saedi, S.E. Saghaian, Y.I. Chumlyakov and R.D. Noebe, High Strength NiTiHf Shape Memory Alloys with Tailorable Properties, Acta Mater., 2017, 134, p 211–220.

    Article  CAS  Google Scholar 

  44. X.Y. Yi, K.S. Sun, W.H. Gao, X.L. Meng, W. Cai and L.C. Zhao, Martensitic Transformation and Mechanical Properties of Ti-Ni-Hf high Temperature Shape Memory Alloy with Network Structure Second Particles, J. Alloys. Compd., 2018, 735, p 1219–1226.

    Article  CAS  Google Scholar 

  45. S.S. Liu, C.Q. Xia, T. Yang, Z.D. Yang, N. Liu and Q. Li, High Strength and Superior Corrosion Resistance of the Ti-Ni-Cu-Zr Crystal/Glassy Alloys with Superelasticity, Mater. Lett., 2020, 260, 126938.

    Article  Google Scholar 

  46. X.Y. Yi, W.H. Gao, X.L. Meng, Z.Y. Gao, W. Cai and L.C. Zhao, Martensitic Transformation Behaviors and Mechanical Properties of (Ti36Ni49Hf15)100-xYx High Temperature Shape Memory Alloys, J. Alloys. Compd., 2017, 705, p 98–104.

    Article  CAS  Google Scholar 

  47. M. Zarinejad and Y. Liu, Dependence of Transformation Temperatures of NiTi-based Shape-Memory Alloys on the Number and Concentration of Valence Electrons, Adv. Funct. Mater., 2008, 18, p 2789–2794.

    Article  CAS  Google Scholar 

  48. X.L. Han, K.K. Song, L.M. Zhang, H. Xing, B. Sarac, F. Spieckermann, T. Maity, M. Mühlbacher, L. Wang, I. Kaban and J. Eckert, Microstructures Martensitic Transformation, and Mechanical Behavior of Rapidly Solidified Ti-Ni-Hf and Ti-Ni-Si Shape Memory Alloys, JMEPEG, 2018, 27, p 1005–1015.

    Article  CAS  Google Scholar 

  49. J.J. Gilman, R.W. Cumberland and R.B. Kaner, Design of Hard Crystals, Int. J. Refract. Met. Hard Mater., 2006, 24, p 1–5.

    Article  CAS  Google Scholar 

  50. W.C. Kim, K.R. Lim, W.T. Kim, E.S. Park, and D.H. Kim, Recent Advances in Multicomponent NiTi-based Shape Memory Alloy Using Metallic Glass as a Precursor, Prog. Mater. Sci., 2021, p 100855.

Download references

Acknowledgments

We acknowledge the financial supports from the Hubei provincial Department of Education (No. B2020024); the Opening Fund of Hubei Engineering Research Center for Graphite Additive Manufacturing Technology and Equipment (No. HRCGAM202104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangwei Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Li, D., Xu, G. et al. As-Cast High Entropy Shape Memory Alloys of (TiHfX)50(NiCu)50 with Large Recoverable Strain and Good Mechanical Properties. J. of Materi Eng and Perform 31, 10089–10098 (2022). https://doi.org/10.1007/s11665-022-06990-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06990-3

Keywords

Navigation