Skip to main content
Log in

Powder Metallurgy versus Casting: Damping Behavior of Pure Aluminum

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure and mechanical properties of a material are influenced by their fabrication method. This paper addresses how the fabrication process influences the damping behavior of pure aluminum. The samples were fabricated using two routes: powder metallurgy (PM) and casting (CT). Powder mixing, compacting, and sintering of the powder mixture are the basic manufacturing steps in PM, while in casting, the material is heated to liquidus condition and poured into the mold. The samples thus obtained were tested for damping measurements. Damping behavior was obtained at constant strain and at various frequencies of 0.1, 1, and 10 Hz from room temperature to 150°C under dual cantilever mode. Microstructural analysis was done using FESEM. Results demonstrated that the samples fabricated using powder metallurgy route exhibit high damping capacities and storage modulus. The related possible mechanisms for this behavior are analyzed and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PM:

Powder metallurgy

CT:

Casting

XRD:

X-ray diffraction

UTS:

Ultimate tensile strength

YS:

Yield strength

MA:

Mechanical alloying

tanδ:

Loss tangent or damping capacity

E':

Storage modulus

E'':

Loss modulus

References

  1. C.J. Xiao, A study on the damping capacity of BaTiO3-reinforced Al-matrix composites, Bull. Mater. Sci., 2016, 39(2), p 463–467.

    Article  Google Scholar 

  2. J. Wang, Wu. Zhongshan, S. Gao, Lu. Ruopeng, D. Qin, W. Yang and F. Pan, Optimization of mechanical and damping properties of Mg–0.6Zr alloy by different extrusion processing, J. Magn. Alloys, 2015, 3(1), p 79–85.

    Article  Google Scholar 

  3. K. Venkateswara Reddy, R. BheekyaNaik, G. Madhusudhan Reddy and R. Arockia Kumar, Damping capacity of friction stir processed commercial pure aluminium metal, Mater. Today Proc., 2020, 27(3), p 2061–2065.

    Article  Google Scholar 

  4. J. Zhang, R.J. Perez and E.J. Lavernia, Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials, J. Mater. Sci., 1993, 28, p 2395–2404.

    Article  Google Scholar 

  5. D.S. Prasad and C. Shoba, Damping behaviour of metal matrix composites, Trans. Indian Inst. Met., 2015, 68(2), p 161–167.

    Article  Google Scholar 

  6. Z.M. Zhang, C.JXu.J.C. Wang and H.Z. Liu, Damping behavior of ultrafine-grained pure aluminum l2 and the damping mechanism, Acta Metall. Sin., 2006, 19(3), p 223–227.

    Article  Google Scholar 

  7. D.S. Prasad and C. Shoba, Experimental evaluation onto the damping behavior of Al/SiC/RHA hybrid composites, J. Mater. Res. Technol., 2016, 5(2), p 123–130.

    Article  Google Scholar 

  8. M. Penchal Reddy, V. Manakari, G. Parande, F. Ubaid, R.A. Shakoor, A.M.A. Mohamed and M. Gupta, Enhancing compressive, tensile, thermal and damping response of pure Al using BN nanoparticles, J. Alloys Compd., 2018, 762, p 398–408.

    Article  Google Scholar 

  9. D.S. Prasad and C. Shoba, Effect of heat treatment on the white layer and its effect on the damping behavior of metal matrix composites, Mater. Sci. Eng.: A, 2014, 599, p 25–27.

    Article  Google Scholar 

  10. R. Song, C.Y. FanYe and Wu. Sujun, Effect of alloying elements on microstructure, mechanical and damping properties of Cr-Mn-Fe-V-Cu high-entropy alloys, J. Mater. Sci. Technol., 2018, 34(11), p 2014–2021.

    Article  Google Scholar 

  11. C. Liu, Yu. Liming, Z. Ma, Y. Liu, C. Liu, H. Li and H. Wang, Damping capacity of Al–12Si composites effected by negative thermal expansion of Y2W3O12 particle inclusions, J. Mater. Res. Technol., 2020, 9(5), p 9985–9995.

    Article  Google Scholar 

  12. K. Shi, Y. Yan, H. Mei and L. Cheng, Improving the thermal expansion behavior and damping capacity of C/SiC composites by heat treatment, J. Alloy. Compd., 2021, 859, p 1–5.

    Article  Google Scholar 

  13. M. Ebrahimi, Li. Zhang, Q.D. Wang, H. Zhou and W. Li, Damping characterization and its underlying mechanisms in CNTs/AZ91D composite processed by cyclic extrusion and compression, Mater. Sci. Eng. A, 2021, 821, p 1–9.

    Article  Google Scholar 

  14. D. Kim, Daniel John Hennigan, Kevin Daniel Beavers, Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot) recreational yachts, Int. J. Naval Arch. Ocean Eng., 2010, 2(1), p 45–56.

    Article  Google Scholar 

  15. P. Bhati, A. Prasad, N. Bhatnagar, Effect of fabrication process on the tensile properties of the PLA/PCL blends tubes for bioresorbable stent manufacturing. Front. Bioeng. Biotechnol. Conference Abstract: 10th World Biomaterials Congress, 2016.

  16. Hu. Qiyao, H. Zhao and F. Li, Effects of manufacturing processes on microstructure and properties of Al/A356–B4C composites, Mater. Manuf. Processes, 2016, 31(10), p 1292–1300.

    Article  Google Scholar 

  17. Ahmad Aswad Mahaidin, Talib Ria Jaafar, Mohd Asri Selamat, Salina Budin, Zaim Syazwan Sulaiman, Mohamad Hasnan Abdul Hami, Effect of fabrication process on physical and mechanical properties of tungsten carbide - cobalt composite: A review, AIP Conference Proceedings, 2017.

  18. F.P.G. Cuevas and M. Powders, Synthesis and processing, Metals, 2019, 9, p 1–3.

    Google Scholar 

  19. M. Shayan, B. Eghbali and B. Niroumand, Synthesis of AA2024-(SiO2np+TiO2np) hybrid nanocomposite via stir casting process, Mater. Sci. Eng., A, 2019, 756, p 484–491.

    Article  Google Scholar 

  20. D.S. Prasad, C. Shoba and N. Ramanaiah, Investigations on mechanical properties of aluminium hybrid composites, J. Mater. Res. Technol., 2014, 3, p 79–85.

    Article  Google Scholar 

  21. Y. Pazhouhanfar and B. Eghbali, Microstructural characterization and mechanical properties of TiB2 reinforced Al6061 matrix composites produced using stir casting process, Mater. Sci. Eng., A, 2017, 691, p 8–15.

    Google Scholar 

  22. K. Park, J. Park and H. Kwon, Fabrication and characterization of Al-SUS316L composite materials manufactured by the spark plasma sintering process, Mater. Sci. Eng., A, 2017, 691, p 8–15.

    Article  Google Scholar 

  23. K.N. Manjunath and G.B. Krishnappa, Mechanical characterization of Al-Cu alloy produced using conventional sintering process, Mater. Today: Proc., 2018, 5, p 3019–3026.

    Google Scholar 

  24. A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad and P. Borah, Fabrication and properties of dispersed carbon nanotube-aluminum composites, Mater. Sci. Eng., A, 2009, 508, p 167–173.

    Article  Google Scholar 

  25. B. Kaveendran, G.S. Wang, L.J. Huang, L. Geng and H.X. Peng, In situ (Al3Zr + Al2O3np)/2024Al metal matrix composite with novel reinforcement distributions fabricated by reaction hot pressing, J. Alloy. Compd., 2013, 581, p 16–22.

    Article  Google Scholar 

  26. P.B. Pawar and A. Abhay Utpat, Development of aluminium based silicon Ccarbide particulate metal matrix composite for Sspur gear, Procedia, Mater. Sci., 2014, 6, p 1150–1156.

    Google Scholar 

  27. V.C. Srivastava, A. Schneider, V. Uhlenwinkel and K. Bauckhage, Spray processing of 2014 –Al/ SiCp composites and their property evaluation, Mater. Sci. Eng., A, 2005, 412, p 19–26.

    Article  Google Scholar 

  28. K.S. Umashankar, A. Abhinav, K.V. Gangadharan and D. Vijay, Damping behaviour of cast and sintered aluminium, J. Eng. Appl. Sci., 2009, 4(6), p 66–71.

    Google Scholar 

  29. P.K. Rohatgi, D. Nath and S.S. Singh, Factors affecting the damping capacity of cast aluminium-matrix composites, J. Mater. Sci., 1994, 29, p 5975–5984.

    Article  Google Scholar 

  30. L.I. Guo-cong, M.A. Yue, H.E. Xiao-lei, L.I. Wei and L.I. Pei-yong, Damping capacity of high strength-damping aluminum alloys prepared by rapid solidification and powder metallurgy process, Trans. Nonferrous Met. Soc. China, 2012, 22(5), p 1112–1117.

    Article  Google Scholar 

  31. D.S. Prasad, N.S. Ebenezer, C. Shoba and S.R. Pujari, Effect of nickel electroplating on the mechanical damping and storage modulus of metal matrix composites, Mater. Res. Express, 2018, 5(11), p 116409.

    Article  Google Scholar 

  32. S.P. Dora, S. Chintada, T.R. Palukuri and S.R. Pujari, Energy dissipation in WCCo coated A356.2RHA composites, Eng. Sci. Technol.: An Int. J., 2020, 23(5), p 1285–1290.

    Google Scholar 

  33. S.G. Ma, P.K. Liaw, M.C. Gao, J.W. Qiao, Z.H. Wang and Y. Zhang, Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer, J. Alloy. Compd., 2014, 604, p 331–339.

    Article  Google Scholar 

  34. E. Acar and M. Aydın, Damping behavior of Al/SiC functionally graded and metal matrix composites, J. Asian Ceram. Soc., 2021, 9(2), p 578–585.

    Article  Google Scholar 

  35. A. Granato and K. Lücke, Theory of mechanical damping due to dislocations, J. Appl. Phys., 1956, 27(6), p 583–593.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Science and Engineering Research Board, Department of Science and Technology, New Delhi, India, for financial support (EEQ/2017/000276 dated 16th March 2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoba Chintada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chintada, S., Dora, S.P., Kare, D. et al. Powder Metallurgy versus Casting: Damping Behavior of Pure Aluminum. J. of Materi Eng and Perform 31, 9122–9128 (2022). https://doi.org/10.1007/s11665-022-06886-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06886-2

Keywords

Navigation