Skip to main content
Log in

Global and Local Corrosion Performance of Nano-SiC Induced Micro-arc Oxidation Coating on Magnesium Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to explore the wide application of AM60B in automobile field, nano-SiC/micro-arc oxidation (MAO) composite coating layer was prepared on the surface of AM60B to improve its high-temperature corrosion resistance. The electrochemical properties were studied in different temperature environments (ambient temperature (ABM), 60, 80, and 100 °C) using potentiodynamic polarization tests. The local corrosion properties were evaluated in 3.5% NaCl solution using Localized Electrochemical Impedance Spectroscopy (LEIS). The global electrochemical test results show that the impedance of nano-SiC/MAO coating is 1~2 orders of magnitude higher than that of MAO coating in high-temperature corrosion environment, and the main corrosion product is Mg(OH)2. The local electrochemical test results show that the minimum impedance of nano-SiC/MAO coating is 2×105 Ω higher than that of MAO coating, and the longitudinal depth and transverse width of scratch expansion are smaller than that of MAO coating. The scratch coating still has a protective effect on the substrate. The corrosion physical model of nano-SiC/MAO coating with scratches is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C.P. Du and D.F. Xu, Application of Energy-Saving Magnesium Alloy in Automotive Industry. Adv. Mater. Res., 2013, 2482.

  2. S.F. Wang, W.W. Hu, Z.H Gao, T.P Zhao, The Application of Magnesium Alloy in Automotive Seat Design, Appl. Mech. Mater., 2013, 2659.

  3. M.B. Feng, Automob. Technol. Mater., 2013, (2), 73–75.

  4. C. Zhao, X.Y. Chen, Z.B. Li, T.P. Zhao, Automob. Technol. Mater., 2011, (7), 54–57.

  5. Y. Zhan, D. Ju, H. Zhao and X. Hu, Effects of Zn-In-Sn Elements on the Electric Properties of Magnesium Alloy Anode Materials, J. Environ. Sci., 2011, 23, p S95–S99.

    Article  Google Scholar 

  6. M. Yang, F. Pan, R. Cheng and S. Jia, Comparison About Effects of Sb, Sn and Sr on As-cast Microstructure and Mechanical Properties of AZ61–0.7Si Magnesium Alloy, Mater. Sci. Eng. A, 2012, 489(1–2), p 413–418.

    Google Scholar 

  7. L. Liu and R. Xu, Protection of Magnesium Alloy Weldment using Arc-sprayed Aluminum Coatings and its Postheat Treatment, Surf. Interface Anal., 2010, 42(12–13), p 1728–1734.

    Article  CAS  Google Scholar 

  8. Z. Jin, W. Ying, Effect of Heat Treatment on Microstructure and Properties of Zinc-Aluminum Coating on AZ91 Magnesium Alloy. In: International Conference on Surface Engineering Abstract, 2007.

  9. Y. Gu, C.F. Chen, S. Bandopadhyay, C. Ning, Y. Zhang and Y. Guo, Corrosion Mechanism and Model of Pulsed DC Microarc Oxidation Treated AZ31 Alloy in Simulated Body Fluid, Appl. Surf. Sci., 2012, 258(16), p 6116–6126.

    Article  CAS  Google Scholar 

  10. Y. Song, K. Dong, D. Shan and E.H. Han, Investigation of a Novel Self-sealing Pore Micro-arc Oxidation Film on AM60 Magnesium Alloy, J. Magnes. Alloys, 2013, 1(1), p 82–87.

    Article  CAS  Google Scholar 

  11. K. Dong, Y. Song, D. Shan and E.H. Han, Corrosion Behavior of a Self-sealing Pore Micro-arc Oxidation Film on AM60 Magnesium Alloy, Corros. Sci., 2015, 100, p 275–283.

    Article  CAS  Google Scholar 

  12. A. Aly, B. Xn, B. Al, B. Am and C. Sjd, Plasma Electrolysis for Surface Engineering - ScienceDirect, Surf. Coat. Technol., 1999, 122(2–3), p 73–93.

    Google Scholar 

  13. A. Zhw, B. Jmz, L.A. Yan, A. Ljb and A. Gjz, Enhanced Corrosion Resistance of Micro-arc Oxidation Coated Magnesium Alloy by Superhydrophobic MgAl Layered Double Hydroxide Coating, Trans. Nonferr. Metals Soc. China, 2019, 29(10), p 2066–2077.

    Article  Google Scholar 

  14. N.S. Xie and J. Wang, Study on Properties of Al2TiO5 Coating on Ti-6Al-4V Titanium Alloy, Key Eng. Mater., 2014, 575–576, p 348–351.

    Google Scholar 

  15. Q.U. Yao, C. Yang, X. Jin, D.U. Jiancheng and W. Xue, High Temperature Steam Corrosion Of Microarc Oxidation Coatings on 6061 Aluminum Alloy at 300C/3 MPa Steam, Surf. Rev. Lett., 2020, 1, p 2050030.

    Google Scholar 

  16. F. Liu, L.I. Yu-Jie, G.U. Jia-Jing, Q.S. Yan, Q. Luo and Q.Z. Cai, Preparation and Performance of Coating on Rare-earth Compounds-Immersed Magnesium Alloy by Micro-arc Oxidation, Trans. Nonferr. Metals Soci. China, 2012, 22, p 1647.

    Article  CAS  Google Scholar 

  17. J. Jin, L.I. Huan, L.I Gan, Influence of Micro Arc-oxidation Wear Resistance of AZ91D Magnesium Alloy under High Temperature, J. Zhejiang Univ. Technol., 2015.

  18. Y.H. Wang, Z.G. Liu, J.H. Ouyang, Y.M. Wang and Y. Zhou, Preparation and High Temperature Oxidation Resistance of Microarc Oxidation Ceramic Coatings Formed on Ti2AlNb Alloy, Appl. Surf. Sci., 2012, 258(22), p 8946–8952.

    Article  CAS  Google Scholar 

  19. R. Küükosman, E. Sukuroglu, Y. Totik and S. Sukuroglu, Investigation of Wear Behaviour of Graphite Additive Composite Coatings Deposited by Micro Arc Oxidation-Hydrothermal Treatment on AZ91 Mg Alloy, Surf. Interfaces, 2020, 22, p 100894.

    Article  Google Scholar 

  20. M. Kaseem, T. Hussain, Z.U. Rehman and Y.G. Ko, Stabilization of AZ31 Mg Alloy in Sea Water via Dual Incorporation of MgO and WO3 During Micro-arc Oxidation, J. Alloys Compd., 2021, 853, p 157036.

    Article  CAS  Google Scholar 

  21. K.G. Nickel, F. Zhe and P. Quirmbach, High-Temperature Oxidation and Corrosion of Engineering Ceramics, J. Eng. Gas Turbines Power, 1993, 115(1), p 76.

    Article  CAS  Google Scholar 

  22. H. Klemm, M. Herrmann and C. Schubert, High Temperature Oxidation and Corrosion of Silicon-Based Non-oxide Ceramics, J. Eng. Gas Turbines Power, 2000, 122(1), p 13–18.

    Article  CAS  Google Scholar 

  23. S.Y. Wang, S.I. Nai-Chao, Y.P. Xia and L. Liu, Influence of Nano-SiC on Microstructure and Property of MAO Coating Formed on AZ91D Magnesium Alloy, Trans. Nonferr. Metals Soc. China, 1926, 2015, p 25.

    Google Scholar 

  24. S. Wang, Y. Gu, Y. Geng, J. Liang and J. Kang, Investigating Local Corrosion Behavior and Mechanism of MAO Coated 7075 Aluminum Alloy, J. Alloys Compd., 2020, 826, p 153976.

    Article  CAS  Google Scholar 

  25. N. Nashrah, M.P. Kamil, D.K. Yoon, Y.G. Kim and Y.G. Ko, Formation Mechanism of Oxide Layer on AZ31 Mg Alloy Subjected to Micro-arc Oxidation Considering Surface Roughness, Appl. Surf. Sci., 2019, 497, p 143772.

    Article  CAS  Google Scholar 

  26. Y. Yang and W. Hua, Key Laboratory of Advanced Structural Materials MoE, Changchun University of Technology,Changchun ,China, Effects of Current Frequency on the Microstructure and Wear Resistance of Ceramic Coatings Embedded with SiC Nano-particles Produced by Micro-arc Oxidation on AZ91D Magnesium Alloy, J. Mater. Sci. Technol. (10), 7.

  27. J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou, W. Liu and X. Tao, Effects of NaAlO2 on Structure and Corrosion Resistance of Microarc Oxidation Coatings Formed on AM60B Magnesium Alloy in Phosphate-KOH Electrolyte, Surf. Coat. Technol., 2005, 199(2–3), p 121–126.

    Article  CAS  Google Scholar 

  28. H.Y. Hsiao and W.T. Tsai, Characterization of Anodic Films Formed on AZ91D Magnesium Alloy – Science Direct, Surf. Coat. Technol., 2005, 190(2), p 299–308.

    Article  CAS  Google Scholar 

  29. A.L. Yerokhin, V.V. Lyubimov and R.V. Ashitkov, Phase Formation in Ceramic Coatings During Plasma Electrolytic Oxidation of Aluminium Alloys, Ceram. Int., 1998, 24(1), p 1–6.

    Article  CAS  Google Scholar 

  30. A.L. Yerokhin, A. Leyland and A. Matthews, Kinetic Aspects of Aluminium Titanate Layer Formation on Titanium Alloys by Plasma Electrolytic Oxidation, Appl. Surf. Sci., 2002, 200, p 172.

    Article  CAS  Google Scholar 

  31. J. Camargo, H.J. Cornelis, V.M.O.H. Cioffi and M. Costa, Coating Residual Stress Effects on Fatigue Performance of 7050–T7451 Aluminum Alloy, Surf. Coat. Technol., 2007, 201(24), p 9448–9455.

    Article  Google Scholar 

  32. B. Hda, C. Kd, B. Cya and B. Fwa, Electrochemical Corrosion Behavior of Composite Coatings of Sealed MAO Film on Magnesium Alloy AZ91D, Electrochim. Acta, 2006, 51(14), p 2898–2908.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Beijing Municipal Natural Science Foundation. (Grant No. 3192013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Zhao or Xiaoyu Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, T., Zhao, J., Yang, X. et al. Global and Local Corrosion Performance of Nano-SiC Induced Micro-arc Oxidation Coating on Magnesium Alloy. J. of Materi Eng and Perform 31, 6747–6758 (2022). https://doi.org/10.1007/s11665-022-06724-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06724-5

Keywords

Navigation