Skip to main content
Log in

Development of Space Qualified High Solar Absorptance Nanostructured Black CuO Coating for Spaceborne Plasma Instruments

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Copper oxide (CuO) nanostructures have gained significance due to their chemical and physical properties that find applications in sensing, electronics and minimizing solar background count in spaceborne plasma instruments. In this work, a wet-chemical route has been utilized to synthesize nanostructured CuO coating on aluminum alloy substrates. The coating was thoroughly characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), Raman spectroscopy, glow-discharge optical emission spectroscopy (GDOES), UV-VIS-NIR spectrophotometer and four probe resistance methods. XRD results showed diffraction peaks corresponding to CuO while SEM micrograph depicted a floral-like nanostructure. Raman spectrum revealed phonon vibrational modes corresponding to CuO. The average solar absorptance of CuO nanostructure was 96% in the wavelength range of 0.25-2.5 μm. A comparison of the UV-induced photoelectron counts between the bare substrate and coated samples showed reduction by a factor of 107 due to the presence of CuO nanostructures. The CuO nanostructures also exhibited excellent electrical conductivity and low-degassing properties. Finally, space worthiness studies of the coating in simulated space environments was carried out and proven to be space qualified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Li, X.Y. Yang, Y. Feng, Z.Y. Yuan and B.L. Su, One-Dimensional Metal Oxide Nanotubes, Nanowires, Nanoribbons, and Nanorods: Synthesis, Characterizations, Properties and Applications, Crit. Rev. Solid State Mater. Sci., 2012, 37(1), p 1–74.

    Google Scholar 

  2. S. Anandan and S. Yang, Emergent Methods to Synthesize and Characterize Semiconductor CuO Nanoparticles with Various Morphologies—An Overview, J. Exp. Nanosci., 2007, 2(1–2), p 23–56.

    CAS  Google Scholar 

  3. R.V. Kumar, Y. Diamant and A. Gedanken, Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates, Chem. Mater., 2000, 12(8), p 2301–2305.

    CAS  Google Scholar 

  4. M. Shaban, K. Abdelkarem and A.M.E. Sayed, Structural, Optical and Gas Sensing Properties of Cu2O/CuO Mixed Phase: Effect of the Number of Coated Layers and (Cr+S) co-Doping, Phase Trans., 2019, 92(4), p 347–359.

    CAS  Google Scholar 

  5. Y. Li, J. Liang, Z. Tao and J. Chen, CuO Particles and Plates: Synthesis and Gas-Sensor Application, Mater. Res. Bull., 2008, 43(8), p 2380–2385.

    CAS  Google Scholar 

  6. A. Ghosh, A. Maity, R. Banerjee and S.B. Majumder, Volatile Organic Compound Sensing using Copper Oxide Thin Films: Addressing the Cross Sensitivity Issue, J. Alloys Compd., 2017, 692, p 108–118.

    CAS  Google Scholar 

  7. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J.M. Tarascon, Nano-sized Transition-Metal Oxides as Negative Electrode Materials for Lithium-Ion Batteries, Nature, 2000, 407(6803), p 496–499.

    CAS  Google Scholar 

  8. M.M. Momeni, Z. Nazari, A. Kazempour, M. Hakimiyan and S.M. Mirhoseini, Preparation of CuO Nanostructures Coating on Copper as Supercapacitor Materials, Surf. Eng., 2014, 30(11), p 775–778.

    CAS  Google Scholar 

  9. N.A. Raship, M.Z. Sahdan, F. Adriyanto, M.F. Nurfazliana and A.S. Bakri, Effect of annealing temperature on the properties of copper oxide films prepared by dip coating technique, International Conference on Engineering, Science and Nanotechnology 2016 (ICESNANO 2016), U. Wagenknecht, P. Potschke, S. Weissner and M. Gehde, Ed., Aug 3 - 5, 2016 (Solo, Indonesia), AIP Conf. Proc., 2017, American Institute of Physics, 1788(1), p 030121

  10. F. Antoncik, O. Jankovsky, T. Hlasek and V. Bartunek, Nanosized Pinning Centers in the Rare Earth-Barium-Copper-Oxide Thin-Film Superconductors, Nanomaterials, 2020, 10(8), p 1429.

    CAS  Google Scholar 

  11. H.E. Aakib, J.F. Pierson, M. Chaik, H.A. Dads, C.S. Vall, A. Narjis and A. Outzourhit, Nickel Doped Copper Oxide Thin Films Prepared by Radiofrequency Reactive Sputtering: Study of the Impact of Nickel Content on the Structural, Optical and Electrical Properties, Spectrosc. Lett., 2021, 54(7), p 487–494.

    Google Scholar 

  12. B.J. Love, J. Baborowski, M. Charbonnier and M. Romand, Surface Chemical Characterization of Copper Oxide and its Relationship to Adhesion in Formed Epoxy/Copper Interfaces, J. Adhes., 1999, 69(1–2), p 165–179.

    CAS  Google Scholar 

  13. M.M. Momeni and Z. Nazari, Hydrogen Evolution from Solar Water Splitting on Nanostructured Copper Oxide Photocathodes, Mater. Res. Innovations, 2017, 21(1), p 15–20.

    CAS  Google Scholar 

  14. T. Oku, R. Motoyoshi, K. Fujimoto, T. Akiyama, B. Jeyadevan and J. Cuya, Structures and Photovoltaic Properties of Copper Oxides/Fullerene Solar Cells, J. Phys. Chem. Solids, 2011, 72(11), p 1206–1211.

    CAS  Google Scholar 

  15. S. Kim, Y.S. Jung, J.S. Hong and K.H. Kim, Fabrication of Copper Oxide Based Heterojunction Thin Film Solar Cells using Sputtering, Mol. Cryst. Liq. Cryst., 2018, 677(1), p 10–18.

    CAS  Google Scholar 

  16. M. Goto, A. Kasahara, T. Oishi, K. Youko and T. Masahiro, Lubricative Coatings of Copper Oxide for Aerospace Applications, J. Appl. Phys., 2003, 94(3), p 2110–2114.

    CAS  Google Scholar 

  17. A. Menazea and M. Ahmed, Silver and Copper Oxide Nanoparticles-Decorated Graphene Oxide via Pulsed Laser Ablation Technique: Preparation, Characterization, and Photoactivated Antibacterial Activity, Nano-Struct. Nano-objects, 2020, 22, p 100464.

    CAS  Google Scholar 

  18. N. Verma and N. Kumar, Synthesis and Biomedical Applications of Copper Oxide Nanoparticles: An Expanding Horizon, ACS Biomater. Sci. Eng., 2019, 5(3), p 1170–1188.

    CAS  Google Scholar 

  19. G.R. Tortella, J.C. Pieretti, O. Rubilar, M. Fernandez-Baldo, A. Benavides-Mendoza, M.C. Diez and A.B. Seabra Silver, copper and Copper Oxide Nanoparticles in the Fight Against Human Viruses: Progress and Perspectives, Crit. Rev. Biotechnol., 2021 https://doi.org/10.1080/07388551.2021.1939260

    Article  Google Scholar 

  20. A.R. Padmavathi, P.S. Murthy, A. Das, P.A. Nishad, R. Pandian and T. Subbarao, Copper Oxide Nanoparticles as an Effective Anti-Biofilm Agent Against a Copper Tolerant Marine Bacterium, Staphylococcus Lentus, Biofouling, 2019, 35(9), p 1007–1025.

    CAS  Google Scholar 

  21. D.E. Egirani, N.R. Poyi, N. Wessey and S. Acharjee, Synthesis and Characterization of Goethite Coated with Copper Oxide and its Effect on the Removal of Aqueous Mercury(ii) Ions, J. Taibah Univ. Sci., 2018, 12(5), p 652–660.

    Google Scholar 

  22. B. Wang, Y. Xie, T. Yang, L. Wang, L. Wang and D. Jin, Synthesis and Photocatalytic Properties of Flexible cu2o Thin Film, Surf. Eng., 2020, 36(2), p 199–205.

    CAS  Google Scholar 

  23. C. Zeng, Y. Wang, C. Gao and Y. Liu, Hierarchical Cu2O/CuO/TiO2 Composite Films with High Superhydrophobicity and Strong Adhesion, Surf. Eng., 2021 https://doi.org/10.1080/02670844.2021.1873899

    Article  Google Scholar 

  24. P.J.M. Isherwood, A. Abbas, J.W. Bowers, B. Grew and J.M. Walls, Deposition of Cupric Oxide Thin Films by Spin Coating, Mater. Res. Innov., 2014, 18(2), p 95–98.

    CAS  Google Scholar 

  25. G.A. Collinson, D.O. Kataria, A.J. Coates, S.M.E. Tsang, C.S. Arridge, G.R. Lewis, R.A. Farhm, J.D. Winningham and S. Barabash, Electron Optical Study of the Venus Ex- Press ASPERA-4 Electron Spectrometer (ELS) Top-Hat Electrostatic Analyser, Meas. Sci. Technol., 2009, 20(5), p 055204.

    Google Scholar 

  26. C. Alsop, S. Scott and L. Free, UV Rejection Design and Performance of the PEACE Electrostatic Analyzers, Measurement Techniques in Space Plasma: Particles, R.F. Pfaff, J.E. Borovsky, D.T. Young, Ed., Geophys. Monogr. Ser., Am. Geophys. Union, 1998, 102, p 269–274

  27. S. Karthick Kumar, S. Murugesan and S. Suresh, Preparation and Characterization of CuO Nanostructures on Copper Substrate as Selective Solar Absorbers, Mater. Chem. Phys., 2014, 143(3), p 1209–1214.

    CAS  Google Scholar 

  28. A.D. Johnstone, C. Alsop, S. Burge, P.J. Carter, A.J. Coates, A.J. Coker, A.N. Fazakerley, M. Grande, R.A. Gowen, C. Gurgiolo, B.K. Hancock, B. Narheim, A. Preece, P.H. Sheather, J.D. Winningham and R.D. Woodliffe, Peace: A Plasma Electron and Current Experiment, Space Sci. Rev., 1997, 79, p 351–398.

    Google Scholar 

  29. V.H. Castrejon-Sanchez, A.C. Solis, R. Lopez, C. Encarnacion-Gomez, F.M. Morales, O.S. Vargas, J.E. Mastache-Mastache and G.V. Sanchez, Thermal Oxidation of Copper over a Broad Temperature Range: Towards the Formation of Cupric Oxide (CuO), Mater. Res. Express, 2019, 6(7), p 075909.

    CAS  Google Scholar 

  30. V. Ramya, K. Neyvasagam, R. Chandramohan, R. Mohan, S. Valanarasu and A.M.F. Benial, The Consequence of Immersion Time in Chemical Bath Deposition on the Properties of CuO Thin Films, Surf. Eng., 2019, 35(10), p 891–898.

    CAS  Google Scholar 

  31. A. Scherer, O. Inal and A. Singh, Investigation of Copper Oxide Coatings for Solar Selective Applications, Sol. Energy Mater. Sol. Cells, 1983, 9(2), p 139–158.

    CAS  Google Scholar 

  32. D.M. Mattox and R.R. Sowell, High Absorptivity Solar Absorbing Coatings, J. Vac. Sci. Technol., 1974, 11(4), p 793–796.

    CAS  Google Scholar 

  33. A. Fouda, Electrochemical Production of Copper Oxides and Their Uses as Indicator Electrodes, J. Electroanal. Chem. Interfacial Electrochem., 1980, 110(1), p 357–360.

    CAS  Google Scholar 

  34. K. Hauffe, The Mechanism of Oxidation of Metals and Alloys at High Temperatures, Prog. Met. Phys., 1953, 4, p 71–104.

    CAS  Google Scholar 

  35. S. Iijima, Helical Microtubules of Graphitic Carbon, Nature, 1991, 354, p 56–58.

    CAS  Google Scholar 

  36. A.M. Morales and C.M. Lieber, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires, Science, 1998, 279, p 208–211.

    CAS  Google Scholar 

  37. Z.W. Pan, Z.R. Dai and Z.L. Wang, Nanobelts of Semiconducting Oxides, Science, 2001, 291(5510), p 1947–1949.

    CAS  Google Scholar 

  38. P.J. Rivero, J.A. Garcia, I. Quintana and R. Rodriguez, Design of Nanostructured Functional Coatings by Using Wet-Chemistry Methods, Coatings, 2018, 8(2), p 76.

    Google Scholar 

  39. G. Mrówka-Nowotnik, Influence of Chemical Composition Variation and Heat Treatment on Microstructure and Mechanical Properties of 6xxx Alloys, Arch. Mater. Sci. Eng., 2010, 46(2), p 98–107.

    Google Scholar 

  40. A. Aslani and V. Oroojpour, CO Gas Sensing of CuO Nanostructures, Synthesized by an Assisted Solvothermal Wet Chemical Route, Phys. B Condens. Matter, 2011, 406, p 144–149.

    CAS  Google Scholar 

  41. A.S. Ethiraj and D.J. Kang, Synthesis and Characterization of CuO Nanowires by a Simple Wet Chemical Method, Nanoscale Res. Lett., 2012, 7, p 70.

    Google Scholar 

  42. S. Jana, S. Das, N.S. Das and K.K. Chattopadhyay, CuO Nanostructures on Copper Foil by a Simple Wet Chemical Route at Room Temperature, Mater. Res. Bull., 2010, 45, p 693–698.

    CAS  Google Scholar 

  43. D.P. Singh, A.K. Ojha and O.N. Srivastava, Synthesis of Different Cu(OH)2 and CuO (Nanowires, Rectangles, Seed-, Belt-, and Sheet like) Nanostructures by Simple Wet Chemical Route, J. Phys. Chem. C, 2009, 113, p 3409–3418.

    CAS  Google Scholar 

  44. C. Chen, S. Cheng, T. Shi, Y. Zhong, Y. Huang, J. Li, G. Liao and Z. Tang, Size Distribution Control of Copper Nanoparticles and Oxides: Effect of Wet-Chemical Redox Cycling, Inorg. Chem., 2019, 58(4), p 2533–2542.

    CAS  Google Scholar 

  45. G. Song, X. Zhang, Y. Li, T. Wang, L. Zhang, F. Fan and Y. Fu, Green and Ultrafast Preparation of Layered CuO Nanoparticles and its Ultrahigh-Performance Ethanol Sensing Application, J. Mol. Liq., 2021, 342, p 117473.

    CAS  Google Scholar 

  46. B. Xue, Z. Qian, C. Liu and G. Luo, Synthesis of CuO Nanoparticles via One-pot Wet-chemical Method and Its Catalytic Performance on the Thermal Decomposition of Ammonium Perchlorate, Russ. J. Appl. Chem., 2017, 90(1), p 138–143.

    CAS  Google Scholar 

  47. D. Zhu, L. Wang, W. Yu and H. Xie, Intriguingly High Thermal Conductivity Increment for CuO Nanowires Contained Nanofluids with Low Viscosity, Sci. Rep., 2018, 8, p 5282.

    Google Scholar 

  48. V. Mote, Y. Purushotham and B. Dole, Williamson-Hall Analysis in Estimation of Lattice Strain in Nanometer-Sized ZnO Particles, J. Theor. Appl. Phys., 2012, 6, p 6.

    Google Scholar 

  49. D. Packham, Preparation of Metallic Surfaces with Microfibrous Topography and Their Effect on Adhesion of Hot-Melt and Thermoset Adhesives, Int. J. Adhes. Adhes., 1986, 6(4), p 225–228.

    CAS  Google Scholar 

  50. S. Fuentes, R.A. Zarate, P. Munoz and D.E. Diaz-Droguett, Formation of Hierarchical CuO Nanowires on a Copper Surface via a Room-Temperature Solution-Immersion Process, J. Chil. Chem. Soc., 2010, 55, p 147–149.

    CAS  Google Scholar 

  51. J.F. Xu, W. Ji, Z.X. Shen, W.S. Li, S.H. Tang, X.R. Ye, D.Z. Jia and X.Q. Xin, Raman Spectra of CuO Nanocrystals, J. Raman Spectrosc., 1999, 30(5), p 413–415.

    CAS  Google Scholar 

  52. M. Asadi and S. Rozati, Optical and Structural Properties of Nanostructured Copper Oxide Thin Films as Solar Selective Coating Prepared by Spray Pyrolysis Method, Mater. Sci.-Pol., 2017, 35(2), p 355–361.

    CAS  Google Scholar 

  53. X. Xiao, L. Miao, G. Xu, L. Lu, Z. Su, N. Wang and S. Tanemura, A Facile Process to Prepare Copper Oxide Thin Films as Solar Selective Absorbers, Appl. Surf. Sci., 2011, 257(24), p 10729–10736.

    CAS  Google Scholar 

  54. D. Prasanth, K.P. Sibin and H.C. Barshilia, Optical Properties of Sputter Deposited Nanocrystalline CuO Thin Films, Thin Solid Films, 2019, 673, p 78–85.

    CAS  Google Scholar 

  55. K. Kamli, Z. Hadef, B. Chouial and B. Hadjoudja, Thickness Effect on Electrical Properties of Copper Oxide Thin Films, Surf. Eng., 2019, 35(1), p 86–90.

    CAS  Google Scholar 

Download references

Acknowledgment

The work reported here is supported by the Indian Space Organisation (ISRO), Department of Space, Government of India. The authors would like to acknowledge ISRO for providing all the infrastructures to pursue this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Venkataraman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkataraman, V., Thampi, R.S., Abhishek, J.K. et al. Development of Space Qualified High Solar Absorptance Nanostructured Black CuO Coating for Spaceborne Plasma Instruments. J. of Materi Eng and Perform 31, 5689–5696 (2022). https://doi.org/10.1007/s11665-022-06643-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06643-5

Keywords

Navigation