Skip to main content
Log in

In Situ SEM Investigation of Local Deformation and Failure Behavior of Ti6Al4V under Tensile and Shear Loading

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The local deformation and fracture behaviors have been studied for titanium alloy Ti6Al4V using in situ scanning electron microscope (SEM). Uniaxial tensile and shear samples are used to study the deformation and damage processes during the testing up to final failure. The evolution of strain fields on the samples is measured by digital image correlation (DIC) technique. The DIC results show that strain localization develops for samples both uniaxial tensile and shear, which is along the direction of the maximum shear stress. The fracture surfaces for tension and shear samples are observed by the SEM to investigate the coalescence of voids as well as void shapes in different stress states. A large number of dimples which indicate ductile fracture are present at the central region of uniaxial tensile sample while elongated dimples are observed on the edge of fracture surface. In shear test, equiaxial dimples are also observed on the center of the fracture surface and shear dimples elongate along the direction of the maximum shear stress. It is suggested that nucleation and growth of microvoids are the dominant failure mechanism which induced the microcrack initiation, and the effect of the maximum shear stress must be considered both in tensile and shear stress state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A.S. Khan, S. Yu and H. Liu, Deformation Induced Anisotropic Responses of Ti-6Al-4V Alloy Part II: A Strain Rate and Temperature Dependent Anisotropic Yield Criterion, Int. J. Plast., 2012, 38, p 14–26.

    Article  CAS  Google Scholar 

  2. A. Moridi, A.G. Demir, L. Caprio, A.J. Hart, B. Previtali and B.M. Colosimo, Deformation and Failure Mechanisms of Ti-6Al-4V as Built by Selective Laser Melting, Mater. Sci. Eng. A, 2019, 768, p 138456.

    Article  CAS  Google Scholar 

  3. Z. Chen, B. Wang and B. Duan, Mechanical Properties and Microstructure of a High-Power Laser-Welded Ti6Al4V Titanium Alloy, J. Mater. Eng. Perform., 2020, 29(4), p 2296–2304.

    Article  CAS  Google Scholar 

  4. S. Nemat-Nasser, W.-G. Guo, V.F. Nesterenko, S.S. Indrakanti and Y.-B. Gu, Dynamic Response of Conventional and Hot Isostatically Pressed Ti-6Al-4V Alloys: Experiments and Modeling, Mech. Mater., 2001, 33(8), p 425–439.

    Article  Google Scholar 

  5. B.D. Smith, D.S. Shih and D.L. McDowell, Cyclic Plasticity Experiments and Polycrystal Plasticity Modeling of Three Distinct Ti Alloy Microstructures, Int. J. Plast, 2018, 101, p 1–23.

    Article  CAS  Google Scholar 

  6. P.J. Noell, J.D. Carroll and B.L. Boyce, The Mechanisms of Ductile Rupture, Acta Mater., 2018, 161, p 83–98.

    Article  CAS  Google Scholar 

  7. M. Giglio, A. Manes and F. Viganò, Ductile Fracture Locus of Ti-6Al-4V Titanium Alloy, Int. J. Mech. Sci., 2012, 54(1), p 121–135.

    Article  Google Scholar 

  8. J. Huang, Y. Guo, D. Qin, Z. Zhou, D. Li and Y. Li, Influence of Stress Triaxiality on the Failure Behavior of Ti-6Al-4V Alloy Under a Broad Range of Strain Rates, Theoret. Appl. Fract. Mech., 2018, 97, p 48–61.

    Article  CAS  Google Scholar 

  9. S. Goyal, K. Laha and A.K. Bhaduri, Response of Triaxial State of Stress to Creep Rupture Life and Ductility of 316 LN Austenitic Stainless Steel, J. Mater. Eng. Perform., 2017, 26(2), p 752–763.

    Article  CAS  Google Scholar 

  10. M. Brünig, D. Brenner and S. Gerke, Stress State Dependence of Ductile Damage and Fracture Behavior: Experiments and Numerical Simulations, Eng. Fract. Mech., 2015, 141, p 152–169.

    Article  Google Scholar 

  11. F.A. McClintock, A Criterion for Ductile Fracture by the Growth of Holes, J. Appl. Mech., 1968, 35(2), p 363–371.

    Article  Google Scholar 

  12. J.R. Rice and D.M. Tracey, On the Ductile Enlargement of Voids in Triaxial Stress Fields*, J. Mech. Phys. Solids, 1969, 17(3), p 201–217.

    Article  Google Scholar 

  13. Y. Bao and T. Wierzbicki, On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space, Int. J. Mech. Sci., 2004, 46(1), p 81–98.

    Article  Google Scholar 

  14. G. Mirone and D. Corallo, A Local Viewpoint for Evaluating the Influence of Stress Triaxiality and Lode Angle on Ductile Failure and Hardening, Int. J. Plast., 2010, 26(3), p 348–371.

    Article  CAS  Google Scholar 

  15. W. Li, F. Liao, T. Zhou and H. Askes, Ductile Fracture of Q460 Steel: Effects of Stress Triaxiality and Lode Angle, J. Constr. Steel Res., 2016, 123, p 1–17.

    Article  CAS  Google Scholar 

  16. F. Li, L.L. Wang, S.J. Yuan and X.S. Wang, Evaluation of Plastic Deformation During Metal Forming by Using Lode Parameter, J. Mater. Eng. Perform., 2009, 18(9), p 1151–1156.

    Article  CAS  Google Scholar 

  17. Y. Bai and T. Wierzbicki, A New Model of Metal Plasticity and Fracture with Pressure and Lode Dependence, Int. J. Plast., 2008, 24(6), p 1071–1096.

    Article  CAS  Google Scholar 

  18. V. Tvergaard, Effect of Stress-State and Spacing on Voids in a Shear-Field, Int. J. Solids Struct., 2012, 49(22), p 3047–3054.

    Article  Google Scholar 

  19. Y. Lou, J.W. Yoon, H. Huh, Q. Chao and J.-H. Song, Correlation of the Maximum Shear Stress with Micro-Mechanisms of Ductile Fracture for Metals with High Strength-to-Weight Ratio, Int. J. Mech. Sci., 2018, 146–147, p 583–601.

    Article  Google Scholar 

  20. B. Pan, Digital Image Correlation for Surface Deformation Measurement: Historical Developments, Recent Advances and Future Goals, Meas. Sci. Technol., 2018, 29(8), p 082001.

    Article  Google Scholar 

  21. M.A. Sutton, J.-J. Orteu and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements, Springer, New York, 2009.

    Google Scholar 

  22. H. Song, C. Liu, H. Zhang, X. Yang, Y. Chen and S.B. Leen, Experimental Investigation on Damage Evolution in Pre-corroded Aluminum Alloy 7075-T7651 Under Fatigue Loading, Mater. Sci. Eng. A, 2021, 799, p 140206.

    Article  CAS  Google Scholar 

  23. H. Zhang, S. Coppieters, C. Jiménez-Peña and D. Debruyne, Inverse identification of the Post-necking Work Hardening Behaviour of Thick HSS Through Full-Field Strain Measurements During Diffuse Necking, Mech. Mater., 2019, 129, p 361–374.

    Article  Google Scholar 

  24. H. Zhang, D. Fu, H. Song, Y. Kang, G. Huang, G. Qi and J. Li, Damage and Fracture Investigation of Three-Point Bending Notched Sandstone Beams by DIC and AE Techniques, Rock Mech. Rock Eng., 2015, 48(3), p 1297–1303.

    Article  Google Scholar 

  25. H. Song, C. Liu, H. Zhang, J. Du, X. Yang and S.B. Leen, In-Situ SEM Study of Fatigue Micro-crack Initiation and Propagation Behavior in Pre-corroded AA7075-T7651, Int. J. Fatigue, 2020, 137, p 105655.

    Article  CAS  Google Scholar 

  26. A.D. Kammers and S. Daly, Digital Image Correlation under Scanning Electron Microscopy: Methodology and Validation, Exp. Mech., 2013, 53(9), p 1743–1761.

    Article  Google Scholar 

  27. A. Githens and S. Daly, Patterning Corrosion-Susceptible Metallic Alloys for Digital Image Correlation in a Scanning Electron Microscope, Strain, 2017, 53(1), p e12215.

    Article  Google Scholar 

  28. X. Zhang, Y. Wang, J. Yang, Z. Qiao, C. Ren and C. Chen, Deformation Analysis of Ferrite/Pearlite Banded Structure Under Uniaxial Tension Using Digital Image Correlation, Opt. Lasers Eng., 2016, 85, p 24–28.

    Article  Google Scholar 

  29. J.D. Carroll, W.Z. Abuzaid, J. Lambros and H. Sehitoglu, On the Interactions Between Strain Accumulation, Microstructure, and Fatigue Crack Behavior, Int. J. Fract., 2013, 180(2), p 223–241.

    Article  Google Scholar 

  30. J. Liang, Z. Wang, H. Xie and X. Li, In Situ Scanning Electron Microscopy-Based High-Temperature Deformation Measurement of Nickel-Based Single Crystal Superalloy up to 800 °C, Opt. Lasers Eng., 2018, 108, p 1–14.

    Article  Google Scholar 

  31. B. Barkia, V. Doquet, E. Héripré and I. Guillot, Characterization and Analysis of Deformation Heterogeneities in Commercial Purity Titanium, Mater. Charact., 2015, 108, p 94–101.

    Article  CAS  Google Scholar 

  32. W.S. LePage, A. Ahadi, W.C. Lenthe, Q.-P. Sun, T.M. Pollock, J.A. Shaw and S.H. Daly, Grain Size Effects on NiTi Shape Memory Alloy Fatigue Crack Growth, J. Mater. Res., 2018, 33(2), p 91–107.

    Article  CAS  Google Scholar 

  33. M.P. Echlin, J.C. Stinville, V.M. Miller, W.C. Lenthe and T.M. Pollock, Incipient Slip and Long Range Plastic Strain Localization in Microtextured Ti-6Al-4V Titanium, Acta Mater., 2016, 114, p 164–175.

    Article  CAS  Google Scholar 

  34. T.A. Book and M.D. Sangid, Strain Localization in Ti-6Al-4V Widmanstätten Microstructures Produced by Additive Manufacturing, Mater. Charact., 2016, 122, p 104–112.

    Article  CAS  Google Scholar 

  35. S.L. Wei, G.M. Zhu and C.C. Tasan, Slip-Twinning Interdependent Activation Across Phase Boundaries: An In-Situ Investigation of a Ti-Al-V-Fe (Alpha Plus Beta) Alloy, Acta Mater., 2021, 206, p 116520.

    Article  CAS  Google Scholar 

  36. J. Peirs, P. Verleysen and J. Degrieck, Novel Technique for Static and Dynamic Shear Testing of Ti6Al4V Sheet, Exp. Mech., 2012, 52(7), p 729–741.

    Article  Google Scholar 

  37. V. Tvergaard, Influence of Void Nucleation on Ductile Shear Fracture at a Free Surface, J. Mech. Phys. Solids, 1982, 30(6), p 399–425.

    Article  Google Scholar 

  38. A. Needleman and V. Tvergaard, An Analysis of Ductile Rupture in Notched Bars, J. Mech. Phys. Solids, 1984, 32(6), p 461–490.

    Article  Google Scholar 

  39. J. Besson, Continuum Models of Ductile Fracture: A Review, Int. J. Damage Mech., 2010, 19(1), p 3–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was financially supported by the National Natural Science Foundation of China (Grant Nos. 1177220, 11972364 and 51901202), Natural Science Foundation of Jiangsu Province of China (Grant No. BK20190869) and Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No. 21KJB130002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, X., Zhao, L. et al. In Situ SEM Investigation of Local Deformation and Failure Behavior of Ti6Al4V under Tensile and Shear Loading. J. of Materi Eng and Perform 31, 4687–4696 (2022). https://doi.org/10.1007/s11665-022-06599-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06599-6

Keywords

Navigation