Skip to main content
Log in

Effect of Aging Treatment on Toughness and Hardness Behavior in Custom 450 PH Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Custom 450 precipitation-hardenable martensitic stainless steel was solutionized and aged to achieve the best possible combination of hardness and impact toughness for cryogenic application. As-received material was solution-treated at 1040 °C followed by aging at 565 °C for different holding times, 2-16 h. On aging, the austenite phase is reverted by the memory-effect phenomenon, and its phase fraction was found to increase linearly with aging time. Austenite reversion (\(\gamma\)) occurred with acicular morphology at lath, sub-block, and block boundaries and globular morphology at the packet and prior austenite boundary. It was observed that acicular morphology of reverted-\(\gamma\) converted to globular with the aging time, and it was found to influence the hardness, and Charpy V-notch (CVN) impact toughness significantly influences. On the aging treatment of 2 h, the hardness was maximum, and toughness was least because of the possible precipitation effect. However, an enormous increase in toughness was observed for 4 h of aging with a small drop in hardness. A higher toughness is due to the presence of well-developed continuous reverted acicular-\(\gamma\). On aging beyond 4 h, the hardness increases, causing a decrease in the toughness to a similar level as solution-treated samples. Moreover, acicular austenite-\(\gamma\) thickness and globular-\(\gamma\) fraction increases with aging beyond 4 h, which may have accelerated the crack propagation. The dislocation density determined by the modified Williamson–Hall and modified Warren–Averbach method also increased on aging beyond 4 h, which may have attributed to higher hardness. The irregular trend in mechanical properties with aging time is due to the competition effect between the precipitation, phase transformation, austenite morphology, and recovery process with the aging time. Thus, careful aging for 4 h results in the best combination of hardness and toughness in Custom 450 stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. J.E. Bridge and G.N. Maniar, Effect of Reverted Austenite on the Mechanical Properties and Toughness of a High Strength Maraging Stainless Steel Custom 450®, in: Metallogr. as a Qual. Control Tool, (Boston, MA), Springer, 1980, p 279–295. doi: https://doi.org/10.1007/978-1-4613-3090-5_13.

  2. V. Govindaraj, P. Hodgson, R. P Singh, and H. Beladi, Precipitation Reactions in 12Cr–3Ni–3Mn–3Cu–0.15Nb Steel, Mater. Sci. Eng. A., 2021, 808, p 140909. doi: https://doi.org/10.1016/j.msea.2021.140909.

  3. K.H. Lo, C.H. Shek and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R Reports., 2009, 65, p 39–104. https://doi.org/10.1016/j.mser.2009.03.001

    Article  CAS  Google Scholar 

  4. H.J. Rack and D. Kalish, The Strength, Fracture Toughness, and Low Cycle Fatigue Behavior of 17–4 PH Stainless Steel, Metall. Trans., 1974, 5, p 1595–1605. https://doi.org/10.1007/BF02646331

    Article  CAS  Google Scholar 

  5. U.K. Viswanathan, S. Banerjee and R. Krishnan, Effects of Aging on the Microstructure of 17–4 PH Stainless Steel, Mater. Sci. Eng. A., 1988, 104, p 181–189. https://doi.org/10.1016/0025-5416(88)90420-X

    Article  Google Scholar 

  6. C.N. Hsiao, C.S. Chiou and J.R. Yang, Aging Reactions in a 17–4 PH Stainless Steel, Mater. Chem. Phys., 2002, 74, p 134–142. https://doi.org/10.1016/S0254-0584(01)00460-6

    Article  CAS  Google Scholar 

  7. V. A. Kumar, M.K. Karthikeyan, R.K. Gupta, F. Gino Prakash, and P. Ram Kumar, Aging Behavior in 15-5 PH Precipitation Hardening Martensitic Stainless Steel, Mater. Sci. Forum., 2012, 710, p 483–488. doi:https://doi.org/10.4028/www.scientific.net/MSF.710.483.

  8. Y.U. Heo, Y.K. Kim, J.S. Kim and J.K. Kim, Phase Transformation of Cu Precipitates from bcc to fcc in Fe–3Si–2Cu Alloy, Acta Mater., 2013, 61, p 519–528. https://doi.org/10.1016/j.actamat.2012.09.068

    Article  CAS  Google Scholar 

  9. H.R. Habibi-Bajguirani and M.L. Jenkins, High-Resolution Electron Microscopy Analysis of the Structure of Copper Precipitates in a Martensitic Stainless Steel of Type PH 15–5, Philos. Mag. Lett., 1996, 73, p 155–162. https://doi.org/10.1080/095008396180786

    Article  CAS  Google Scholar 

  10. Z. Wang, H. Li, Q. Shen, W. Liu and Z. Wang, Nano-Precipitates Evolution and Their Effects on Mechanical Properties of 17–4 Precipitation-Hardening Stainless Steel, Acta Mater., 2018, 156, p 158–171. https://doi.org/10.1016/j.actamat.2018.06.031

    Article  CAS  Google Scholar 

  11. X. Peng, X. Zhou, X. Hua, Z. Wei and H. Liu, Effect of Aging on Hardening Behavior of 15–5 PH Stainless Steel, J. Iron Steel Res. Int., 2015, 22, p 607–614. https://doi.org/10.1016/S1006-706X(15)30047-9

    Article  Google Scholar 

  12. M. Aghaie-Khafri, S.H. Mousavi Anijdan, and M. Amirkamali, Microstructural Evolution Under Ausforming and Aging Conditions in 17-4 PH Stainless Steel, Mater. Res. Express., 2019, 6, p 106532. doi:https://doi.org/10.1088/2053-1591/ab37e1.

  13. L. Couturier, F. De Geuser, M. Descoins and A. Deschamps, Evolution of the Microstructure of a 15–5PH Martensitic Stainless Steel During Precipitation Hardening Heat Treatment, Mater. Des., 2016, 107, p 416–425. https://doi.org/10.1016/j.matdes.2016.06.068

    Article  CAS  Google Scholar 

  14. C.A. Pampillo and H.W. Paxton, The Effect of Reverted Austenite on the Mechanical Properties and Toughness of 12 Ni and 18 Ni (200) Maraging Steels, Metall. Mater. Trans. B., 1972, 3, p 2895–2903. https://doi.org/10.1007/BF02652858

    Article  CAS  Google Scholar 

  15. J. Han, A.K. da Silva, D. Ponge, D. Raabe, S.M. Lee, Y.K. Lee, S.I. Lee and B. Hwang, The Effects of Prior Austenite Grain Boundaries and Microstructural Morphology on the Impact Toughness of Intercritically Annealed Medium Mn Steel, Acta Mater., 2017, 122, p 199–206. https://doi.org/10.1016/j.actamat.2016.09.048

    Article  CAS  Google Scholar 

  16. D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig and P.P. Choi, Segregation Engineering Enables Nanoscale Martensite to Austenite Phase Transformation at Grain Boundaries: a Pathway to Ductile Martensite, Acta Mater., 2013, 61, p 6132–6152. https://doi.org/10.1016/j.actamat.2013.06.055

    Article  CAS  Google Scholar 

  17. M.R. Plichta and H.I. Aaronson, Influence of Alloying Elements Upon the Morphology of Austenite formed from Martensite in Fe-C-X Alloys, Metall. Trans., 1974, 5, p 2611–2613. https://doi.org/10.1007/BF02643888

    Article  CAS  Google Scholar 

  18. N. Nakada, T. Tsuchiyama, S. Takaki and N. Miyano, Temperature Dependence of Austenite Nucleation Behavior from Lath Martensite, ISIJ Int., 2011, 51, p 299–304. https://doi.org/10.2355/isijinternational.51.299

    Article  CAS  Google Scholar 

  19. X. Zhang, G. Miyamoto, Y. Toji, S. Nambu, T. Koseki, and T. Furuhara, Orientation of Austenite Reverted from Martensite in Fe-2Mn-1.5Si-0.3C Alloy, Acta Mater., 2018, 144, p 601–612. doi:https://doi.org/10.1016/j.actamat.2017.11.003.

  20. K. Li, L. Wei, B. Yu, and R.D.K. Misra, Reverted Austenite with Distinct Characteristics in a New Cobalt-Free Low Lattice Misfit Precipitate-Bearing 19Ni3Mo1.5Ti Maraging Steel, Mater. Lett., 2019, 257, p 126692. doi:https://doi.org/10.1016/j.matlet.2019.126692.

  21. X. Zhang, G. Shen, and C. Li, J. Gu, Phase-Field Simulation of Austenite Reversion in a Fe-9.6Ni-7.1Mn (at.%) Martensitic Steel Governed by a Coupled Diffusional/Displacive Mechanism, Mater. Des., 2020, 188, p 108426. doi:https://doi.org/10.1016/j.matdes.2019.108426.

  22. J. Han and Y.-K. Lee, The Effects of the Heating Rate on the Reverse Transformation Mechanism and the Phase Stability of Reverted Austenite in Medium Mn Steels, Acta Mater., 2014, 67, p 354–361. https://doi.org/10.1016/j.actamat.2013.12.038

    Article  CAS  Google Scholar 

  23. K. Li, J. Shan, C. Wang and Z. Tian, Influence of Aging Temperature on Strength and Toughness of Laser-Welded T-250 Maraging Steel Joint, Mater. Sci. Eng. A., 2016, 669, p 58–65. https://doi.org/10.1016/j.msea.2016.05.043

    Article  CAS  Google Scholar 

  24. K. Tomimura, S. Takaki, and Y. Tokunaga, Reversion Mechanism from Deformation Induced Martensite to Austenite in Metastable Austenitic Stainless Steels., ISIJ Int., 1991, 31, p 1431–1437. doi:https://doi.org/10.2355/isijinternational.31.1431.

  25. K. Tomimura, S. Takaki, S. Tanimoto, and Y. Tokunaga, Optimal Chemical Composition in Fe-Cr-Ni Alloys for Ultra Grain Refining by Reversion from Deformation Induced Martensite., ISIJ Int., 1991, 31, p 721–727. doi: https://doi.org/10.2355/isijinternational.31.721.

  26. S.T. Kimmins and D.J. Gooch, Austenite Memory Effect in 1 Cr–1 Mo–0·75V(Ti, B) Steel, Met. Sci., 1983, 17, p 519–532. https://doi.org/10.1179/030634583790420484

    Article  CAS  Google Scholar 

  27. H. Shirazi, G. Miyamoto, S. Hossein Nedjad, T. Chiba, M. Nili Ahmadabadi, and T. Furuhara, Microstructure Evolution During Austenite Reversion in Fe-Ni Martensitic Alloys, Acta Mater., 2018, 144, p 269–280. doi:https://doi.org/10.1016/j.actamat.2017.10.068.

  28. S. Morito, H. Tanaka, R. Konishi, T. Furuhara and T. Maki, The Morphology and Crystallography of Lath Martensite in Fe-C alloys, Acta Mater., 2003, 51, p 1789–1799. https://doi.org/10.1016/S1359-6454(02)00577-3

    Article  CAS  Google Scholar 

  29. N. Nakada, T. Tsuchiyama, S. Takaki and S. Hashizume, Variant Selection of Reversed Austenite in Lath martensite, ISIJ Int., 2007, 47, p 1527–1532. https://doi.org/10.2355/isijinternational.47.1527

    Article  CAS  Google Scholar 

  30. M. Sato, S. Matsumoto, G. Miyamoto, and T. Furuhara, Microstructure of Reverted Austenite in Fe-0.3 N martensite, Scr. Mater., 2018, 156, p 85–89.

  31. S. Mahadevan, R. Manojkumar, T. Jayakumar, C.R. Das and B.P.C. Rao, Precipitation-Induced Changes in Microstrain and Its Relation with Hardness and Tempering Parameter in 17–4 PH Stainless Steel, Metall. Mater. Trans. A., 2016, 47, p 3109–3118. https://doi.org/10.1007/s11661-016-3440-8

    Article  CAS  Google Scholar 

  32. C. F. Jatczak, J. A. Larson, and S. W Shin, Retained Austenite and its Measurements by x-ray Diffraction. Warrendale, Pa, 1980

  33. Astm, Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation 1, Astm. 03, 2009, 1–7. doi:https://doi.org/10.1520/E0975-13.necessary.

  34. B.D. Cullity, Elements of x-ray diffraction, 2nd ed., Addison-Wesley Publishing Company Inc, 1957. doi:https://doi.org/10.1021/ed034pA178.

  35. E. Prince, International tables for crystallography, 2016.

  36. X. Li and Z. Yin, Reverted Austenite During Aging in 18Ni(350) Maraging Steel, Mater. Lett., 1995, 24, p 239–242. https://doi.org/10.1016/0167-577X(95)00109-3

    Article  CAS  Google Scholar 

  37. D. Brandl, M. Lukas, M. Stockinger, S. Ploberger and G. Ressel, Evidence of Austenite Memory in PH 15–5 and Assessment of its Formation Mechanism, Mater. Des., 2019, 176, 107841. https://doi.org/10.1016/j.matdes.2019.107841

    Article  CAS  Google Scholar 

  38. M. Manokaran, A.S. Kashinath, J.S. Jha, S.P. Toppo and R. Singh, Influence of Tempering in Different Melting Routes on Toughness Behavior of AISI 4340 Steel, J. Mater. Eng. Perform., 2020, 29, p 6748–6760. https://doi.org/10.1007/s11665-020-05164-3

    Article  CAS  Google Scholar 

  39. H. Mirzadeh and A. Najafizadeh, Aging Kinetics of 17–4 PH Stainless Steel, Mater. Chem. Phys., 2009, 116, p 119–124. https://doi.org/10.1016/j.matchemphys.2009.02.049

    Article  CAS  Google Scholar 

  40. S. Isogawa, H. Yoshida, Y. Hosoi, and Y. Tozawa, Improvement of the forgability of 17-4 precipitation hardening stainless steel by ausforming, 1998, 74, p 298–306. doi.org/https://doi.org/10.1016/S0924-0136(97)00286-0

  41. H. Nakagawa and T. Miyazaki, Effect of Retained Austenite on the Microstructure and Mechanical Properties of Martensitic Precipitation Hardening Stainless Steel, J. Mater. Sci., 1999, 34, p 3901–3908. https://doi.org/10.1023/A:1004626907367

    Article  CAS  Google Scholar 

  42. P. Li, Q. Cai, B. Wei and X. Zhang, Effect of Aging Temperature on Erosion-Corrosion Behavior of 17–4PH Stainless Steels in Dilute Sulphuric Acid Slurry, J. Iron Steel Res. Int., 2006, 13, p 73–78. https://doi.org/10.1016/S1006-706X(06)60099-X

    Article  CAS  Google Scholar 

  43. J. Wang, H. Zou, C. Li, R. Zuo, S. Qiu, and B. Shen, Relationship of Microstructure Transformation and Hardening Behavior of Type 17-4 PH Stainless Steel, J. Univ. Sci. Technol. Beijing, Miner. Metall. Mater., 2006, 13, p 235–239. doi:https://doi.org/10.1016/S1005-8850(06)60050-9.

  44. A.R. Stokes and A.J.C. Wilson, A Method of Calculating the Integral Breadths of Debye-SCHERRER Lines: Generalization to Non-Cubic Crystals, Math. Proc. Cambridge Philos. Soc., 1944, 40, p 197–198. https://doi.org/10.1017/S0305004100018314

    Article  CAS  Google Scholar 

  45. E.J. Mittemeijer and U. Welzel, The “State of the Art” of the Diffraction Analysis of Crystallite Size and Lattice Strain, Zeitschrift Für Krist., 2008, 223, p 552–560. https://doi.org/10.1524/zkri.2008.1213

    Article  CAS  Google Scholar 

  46. G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1953, 1, p 22–31. https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  47. B.R. Rehani, P.B. Joshi, K.N. Lad and A. Pratap, Crystallite Size Estimation of Elemental and Composite Silver Nano-Powders Using XRD Principles, Indian J. Pure Appl. Phys., 2006, 44, p 157–161.

    CAS  Google Scholar 

  48. S. Takebayashi, T. Kunieda, N. Yoshinaga, K. Ushioda and S. Ogata, Comparison of the Dislocation Density in Martensitic Steels Evaluated by Some X-ray Diffraction Methods, ISIJ Int., 2010, 50, p 875–882. https://doi.org/10.2355/isijinternational.50.875

    Article  CAS  Google Scholar 

  49. Z. Cong and Y. Murata, Dislocation Density of Lath Martensite in 10Cr-5W Heat-Resistant Steels, Mater. Trans., 2011, 52, p 2151–2154. https://doi.org/10.2320/matertrans.M2011201

    Article  CAS  Google Scholar 

  50. T. Ungár and A. Borbély, The Effect of Dislocation Contrast on x-ray Line Broadening: A New Approach to Line Profile Analysis, Appl. Phys. Lett., 1996, 69, p 3173–3175. https://doi.org/10.1063/1.117951

    Article  Google Scholar 

  51. T. Ungár, I. Dragomir, Á. Révész and A. Borbély, The Contrast Factors of Dislocations in Cubic Crystals: The Dislocation Model of Strain Anisotropy in Practice, J. Appl. Crystallogr., 1999, 32, p 992–1002. https://doi.org/10.1107/S0021889899009334

    Article  Google Scholar 

  52. T. Ungár and G. Tichy, The Effect of Dislocation Contrast on X-Ray Line Profiles in Untextured Polycrystals, Phys. Status Solidi., 1999, 171, p 425–434. https://doi.org/10.1002/(SICI)1521-396X(199902)171:2%3c425::AID-PSSA425%3e3.0.CO;2-W

    Article  Google Scholar 

  53. A. Borbély, J. Dragomir-Cernatescu, G. Ribárik and T. Ungár, Computer Program ANIZC for the Calculation of Diffraction Contrast Factors of Dislocations in Elastically Anisotropic Cubic, Hexagonal and Trigonal Crystals, J. Appl. Crystallogr., 2003, 36, p 160–162. https://doi.org/10.1107/S0021889802021581

    Article  CAS  Google Scholar 

  54. S.A. Kim and W.L. Johnson, Elastic Constants and Internal Friction of Martensitic Steel, Ferritic-Pearlitic Steel, and α-Iron, Mater. Sci. Eng. A., 2007, 452, p 633–639.

    Article  Google Scholar 

  55. N. Forouzanmehr, M. Nili-Ahmadabadi and M. Bönisch, The Analysis of Severely Deformed Pure Fe Structure Aided by X-ray Diffraction Profile, Phys. Met. Metallogr., 2016, 117, p 624–633. https://doi.org/10.1134/S0031918X16060077

    Article  CAS  Google Scholar 

  56. M. Kumagai, M. Imafuku and S. Ohya, Microstructural Features of Cold-Rolled Carbon Steel Evaluated by X-ray Diffraction Line Profile Analysis and Their Correlation with Mechanical Properties, ISIJ Int., 2014, 54, p 206–211. https://doi.org/10.2355/isijinternational.54.206

    Article  CAS  Google Scholar 

  57. B.E. Warren, X-ray Studies of Deformed Metals, Prog. Met. Phys., 1959, 8, p 147–202. https://doi.org/10.1016/0502-8205(59)90015-2

    Article  CAS  Google Scholar 

  58. Z. Arechabaleta, P. van Liempt and J. Sietsma, Quantification of Dislocation Structures from Anelastic Deformation Behaviour, Acta Mater., 2016, 115, p 314–323.

    Article  CAS  Google Scholar 

  59. S. Sugiyama, T. Ogawa, L. He, Z. Wang and Y. Adachi, Quantitative Analysis of the Recovery Process in Pure Iron Using X-ray Diffraction Line Profile Analysis, Materials (Basel), 2021, 14, p 895. https://doi.org/10.3390/ma14040895

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti S. Jha.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhavsar, V., Patil, N., Pawar, V. et al. Effect of Aging Treatment on Toughness and Hardness Behavior in Custom 450 PH Steel. J. of Materi Eng and Perform 31, 4242–4256 (2022). https://doi.org/10.1007/s11665-021-06519-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06519-0

Keywords

Navigation