Skip to main content

Advertisement

Log in

Experimental Investigation on Influence of Waste Egg Shell Particles on Polylactic Acid Matrix for Additive Manufacturing Application

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Biodegradable polymer plays a major role in Additive Manufacturing (AM) technologies due to its novel characteristics that include its complete degradability and eco-friendly nature. The present research work aims to obtain smooth and stable Poly Lactic Acid (PLA)/Eggshell particles (E) composite filaments with enhanced mechanical and thermal properties for additive manufacturing applications. Composite filaments were developed by varying the ratio of E/PLA to 4-6-8-10-12 weight percentages (wt.%) using a single screw extruder. A study of physical, chemical, mechanical, and thermal properties for the manufactured filaments was made. The extruded filaments were subjected to thermal analysis using Melt Flow Index (MFI) to obtain the optimum value for AM applications. XRD analysis made on 4 wt.% eggshell revealed a higher crystallinity than neat PLA. The thermal results of neat PLA and various weight compositions of E revealed there is a decrease in thermal stability and thermal decomposition due to an increase in filler content. 4 wt.% of E shows the good tensile strength of 49.29 MPa with smooth and stable E/PLA composite filaments during extrusion. The SEM images of the composites revealed the interaction between the filler and the matrix. Based on the experimental work, it is observed that the addition of eggshell powder into the PLA increases the mechanical properties with an optimum content of 4 wt.% of E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X. Tian, T. Liu, Q. Wang, A. Dilmurat, D. Li and G. Ziegmann, Recycling and Remanufacturing of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites, J. Clean. Prod., 2017, 142, p 1609–1618.

    Article  CAS  Google Scholar 

  2. R. Siva, G. Gopinatha, I. MouliPremchand, G. Mathiselvan, M. SaravanaKumar. Study on Morphological and Mechanical Properties on Treated and Untreated Veldt Grape/PLA Composites. Materials Today Proceedings, https://doi.org/10.1016/j.matpr.2021.06.425

  3. M.A. Kreiger, M.L. Mulder, A.G. Glover and J.M. Pearce, Life Cycle Analysis of Distributed Recycling of Post-consumer High Density Polyethylene for 3-D Printing Filament, J. Clean. Prod., 2014, 70, p 90–96.

    Article  CAS  Google Scholar 

  4. S.R. Begum, M.S. Kumar, C.I. Pruncu, M. Vasumathi and P. Harikrishnan, Optimization and Fabrication of Customized Scaffold Using Additive Manufacturing to Match the Property of Human Bone, J. Mater. Eng. Perform., 2021 https://doi.org/10.1007/s11665-020-05449-7

    Article  Google Scholar 

  5. Z. Liu, Q. Lei and S. Xing, Mechanical Characteristics of Wood, Ceramic, Metal and Carbon Fiber-Based PLA Composites Fabricated by FDM, J. Market. Res., 2019, 8(5), p 3741–3751.

    CAS  Google Scholar 

  6. Sivagnanamani, G. S., Ramesh, P., Kumar, M. H., and Arul Mozhi Selvan, V. (2021). Fracture Analysis of Fused Deposition Modelling of Bio-composite Filaments. In Fracture Failure Analysis of Fiber Reinforced Polymer Matrix Composites (pp. 71-84). Springer, Singapore.

  7. S. Kumar and A. Czekanski, Development of Filaments Using Selective Laser Sintering Waste Powder, J. Clean. Prod., 2017, 165, p 1188–1196.

    Article  CAS  Google Scholar 

  8. V. Hembrick-Holloman, T. Samuel, Z. Mohammed, S. Jeelani and V.K. Rangari, Ecofriendly Production of Bioactive Tissue Engineering Scaffolds Derived from Egg-and Sea-Shells, J. Market. Res., 2020, 9(6), p 13729–13739.

    CAS  Google Scholar 

  9. Boparai, K. S., Singh, R., & Singh, H. (2016). Experimental Investigations for Development of Nylon6-Al-Al2O3 Alternative FDM Filament. Rapid Prototyp. J.

  10. I. Antoniac, D. Popescu, A. Zapciu, A. Antoniac, F. Miculescu and H. Moldovan, Magnesium Filled Polylactic Acid (PLA) Material for Filament Based 3D Printing, Materials, 2019, 12(5), p 719.

    Article  CAS  Google Scholar 

  11. F. Daver, K.P.M. Lee, M. Brandt and R. Shanks, Cork–PLA Composite Filaments for Fused Deposition Modelling, Compos. Sci. Technol., 2018, 168, p 230–237.

    Article  CAS  Google Scholar 

  12. R. Singh, S. Singh and F. Fraternali, Development of In-house Composite Wire Based Feed Stock Filaments of Fused Deposition Modelling for Wear-Resistant Materials and Structures, Compos. B Eng., 2016, 98, p 244–249.

    Article  CAS  Google Scholar 

  13. C.E. Corcione, E. Palumbo, A. Masciullo, F. Montagna and M.C. Torricelli, Fused Deposition Modeling (FDM): An Innovative Technique Aimed at Reusing Lecce Stone Waste for Industrial Design and Building Applications, Constr. Build. Mater., 2018, 158, p 276–284.

    Article  Google Scholar 

  14. Wu, D., Spanou, A., Diez-Escudero, A., & Persson, C. (2020). 3D-Printed PLA/HA Composite Structures as Synthetic Trabecular Bone: A Feasibility Study Using Fused Deposition Modeling. J. Mech. Behav. Biomed. Mater., 103, 103608.

  15. Heidari-Rarani, M., Rafiee-Afarani, M., & Zahedi, A. M. (2019). Mechanical Characterization of FDM 3D Printing of Continuous Carbon Fiber Reinforced PLA Composites. Compos. Part B: Engineering, 175, 107147.

  16. Boparai, K. S., Singh, R., & Singh, H. (2016). Process Optimization of Single Screw Extruder for Development of Nylon 6-Al-Al2O3 Alternative FDM Filament. Rapid Prototyp. J..

  17. R. Singh, R. Kumar, I. Farina, F. Colangelo, L. Feo and F. Fraternali, Multi-material Additive Manufacturing of Sustainable Innovative Materials and Structures, Polymers, 2019, 11(1), p 62.

    Article  Google Scholar 

  18. K.S.S. Kumar, M. Vivekananthan, M. Saravanakumar and F.S. Raj, Investigation of Physico Chemical, Mechanical and Thermal Properties of the Guettarda Speciosa Bark Fibers, Materials Today: Proceedings, 2021, 37, p 1845–1849. https://doi.org/10.1016/j.matpr.2020.07.443

    Article  CAS  Google Scholar 

  19. A.M. Abdullah, T.N.A.T. Rahim, W.N.F.W. Hamad, D. Mohamad, H.M. Akil and Z.A. Rajion, Mechanical and Cytotoxicity Properties of Hybrid Ceramics Filled Polyamide 12 Filament Feedstock for Craniofacial Bone Reconstruction via Fused Deposition Modelling, Dent. Mater., 2018, 34(11), p e309–e316.

    Article  CAS  Google Scholar 

  20. R. Donate, M. Monzón, Z. Ortega, L. Wang, V. Ribeiro, D. Pestana and R.L. Reis, Comparison Between Calcium Carbonate and β-Tricalcium Phosphate as Additives of 3D Printed Scaffolds with Polylactic Acid Matrix, J. Tissue Eng. Regen. Med., 2020, 14(2), p 272–283.

    Article  CAS  Google Scholar 

  21. M. Janek, V. Žilinská, V. Kovár, Z. Hajdúchová, K. Tomanová, P. Peciar and Ľ Bača, Mechanical Testing of Hydroxyapatite Filaments for Tissue Scaffolds Preparation by Fused Deposition of Ceramics, J. Eur. Ceram. Soc., 2020, 40(14), p 4932–4938.

    Article  CAS  Google Scholar 

  22. Z. Weng, J. Wang, T. Senthil and L. Wu, Mechanical and Thermal Properties of ABS/Montmorillonite Nanocomposites for Fused Deposition Modeling 3D Printing, Mater. Des., 2016, 102, p 276–283.

    Article  CAS  Google Scholar 

  23. K.S. Boparai, R. Singh, F. Fabbrocino and F. Fraternali, Thermal Characterization of Recycled Polymer for Additive Manufacturing Applications, Compos. B Eng., 2016, 106, p 42–47.

    Article  CAS  Google Scholar 

  24. Rahimizadeh, A., Kalman, J., Fayazbakhsh, K., & Lessard, L. (2019). Recycling of Fiberglass wind Turbine Blades into Reinforced Filaments for Use in Additive Manufacturing. Compos. Part B: Eng., 175, 107101.

  25. L. Delva, K. Ragaert, J. Degrieck and L. Cardon, The Effect of Multiple Extrusions on the Properties of Montmorillonite Filled Polypropylene, Polymers, 2014, 6(12), p 2912–2927.

    Article  Google Scholar 

  26. D. Filgueira, S. Holmen, J.K. Melbø, D. Moldes, A.T. Echtermeyer and G. Chinga-Carrasco, Enzymatic-Assisted Modification of Thermomechanical Pulp Fibers to Improve the Interfacial Adhesion with Poly(lactic acid) for 3D Printing, ACS Sustain. Chem. Eng., 2017, 5(10), p 9338–9346.

    Article  CAS  Google Scholar 

  27. Wang, P., Zou, B., Ding, S., Huang, C., Shi, Z., Ma, Y., & Yao, P. (2020). Preparation of Short CF/GF Reinforced PEEK Composite Filaments and Their Comprehensive Properties Evaluation for FDM-3D Printing. Compos. Part B: Eng., 198, 108175.

  28. Z. Lule and J. Kim, Nonisothermal Crystallization of Surface-Treated Alumina and Aluminum Nitride-Filled Polylactic Acid Hybrid Composites, Polymers, 2019, 11(6), p 1077.

    Article  Google Scholar 

  29. B. Ashok, S. Naresh, K.O. Reddy, K. Madhukar, J. Cai, L. Zhang and A.V. Rajulu, Tensile and Thermal Properties of Poly(lactic acid)/Eggshell Powder Composite Films, Int. J. Polym. Anal. Charact., 2014, 19(3), p 245–255.

    Article  CAS  Google Scholar 

  30. R. Nasrin, S. Biswas, T.U. Rashid, S. Afrin, R.A. Jahan, P. Haque and M.M. Rahman, Preparation of Chitin-PLA Laminated Composite for Implantable Application, Bioactive Mater., 2017, 2(4), p 199–207.

    Article  Google Scholar 

  31. Yuniarto, K., Purwanto, Y. A., Purwanto, S., Welt, B. A., Purwadaria, H. K., & Sunarti, T. C. (2016, April). Infrared and Raman Studies on Polylactide Acid and Polyethylene Glycol-400 Blend. In AIP Conference Proceedings (Vol. 1725, No. 1, p. 020101). AIP Publishing LLC.

  32. Brito, G. F., Agrawal, P., & Mélo, T. J. (2016, September). Mechanical and Morphological Properties of PLA/BioPE Blend Compatibilized with E‐GMA and EMA‐GMA Copolymers. In Macromolecular Symposia (Vol. 367, No. 1, pp. 176-182).

  33. Huang, Y. Z., Ji, Y. R., Kang, Z. W., Li, F., Ge, S. F., Yang, D. P., Fan, X. Q. (2020). Integrating Eggshell-Derived CaCO3/MgO Nanocomposites and Chitosan into a Biomimetic Scaffold for Bone Regeneration. Chem. Eng. J., 395, 125098.

  34. M.S. Tizo, L.A.V. Blanco, A.C.Q. Cagas, B.R.B.D. Cruz, J.C. Encoy, J.V. Gunting and V.I.F. Mabayo, Efficiency of Calcium Carbonate from Eggshells as an Adsorbent for Cadmium Removal in Aqueous Solution, Sustain. Environ. Res., 2018, 28(6), p 326–332.

    Article  CAS  Google Scholar 

  35. J.P. Mofokeng, A.S. Luyt, T. Tábi and J. Kovács, Comparison of Injection Moulded, Natural Fibre-Reinforced Composites with PP and PLA as Matrices, J. Thermoplast. Compos. Mater., 2012, 25(8), p 927–948.

    Article  Google Scholar 

  36. E.H. Backes, L.D.N. Pires, L.C. Costa, F.R. Passador and L.A. Pessan, Analysis of the Degradation During Melt Processing of PLA/Biosilicate® Composites, J. Compos. Sci., 2019, 3(2), p 52.

    Article  CAS  Google Scholar 

  37. K. Kaewtatip, C. Chiarathanakrit and S.A. Riyajan, The Effects of Egg Shell and Shrimp Shell on the Properties of Baked Starch Foam, Powder Technol., 2018, 335, p 354–359.

    Article  CAS  Google Scholar 

  38. S.T. Morbale, S.S. Shinde, S.D. Jadhav, M.B. Deshmukh and S.S. Patil, Modified Eggshell Catalyzed, One-pot Synthesis and Antimicrobial Evaluation of 1, 4-dihydropyridines and Polyhydroquinolines, Lett, 2015, 7, p 169–182.

    CAS  Google Scholar 

  39. C.E. Tanase and I. Spiridon, PLA/chitosan/keratin Composites for Biomedical Applications, Mater. Sci. Eng., C, 2014, 40, p 242–247.

    Article  CAS  Google Scholar 

  40. A. Potnuru and Y. Tadesse, Investigation of Polylactide and Carbon Nanocomposite Filament for 3D Printing, Prog. Addit. Manuf., 2019, 4(1), p 23–41.

    Article  Google Scholar 

  41. H. Daraei, A. Mittal, J. Mittal and H. Kamali, Optimization of Cr (VI) Removal onto Biosorbent Eggshell Membrane: Experimental & Theoretical Approaches, Desalin. Water Treat., 2014, 52(7–9), p 1307–1315.

    Article  CAS  Google Scholar 

  42. Y. Li, C. Han, Y. Yu, L. Xiao and Y. Shao, Crystallization Behaviors of Poly(lactic acid) Composites Fabricated Using Functionalized Eggshell Powder and Poly(ethylene glycol), Thermochim. Acta, 2018, 663, p 67–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the Centre for Research, Anna University, Chennai-600025. For the financial support in the form of fellowship (Anna Centenary Research Fellowship, ACRF) (Ref. No. CFR/ACRF/2018/AR1/5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Sivagnanamani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivagnanamani, G.S., Begum, S.R., Siva, R. et al. Experimental Investigation on Influence of Waste Egg Shell Particles on Polylactic Acid Matrix for Additive Manufacturing Application. J. of Materi Eng and Perform 31, 3471–3480 (2022). https://doi.org/10.1007/s11665-021-06464-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06464-y

Keywords

Navigation