Skip to main content
Log in

Atomic Simulation of Crystallographic Orientation Effect on Void Shrinkage and Collapse in Single-Crystal Copper under Shock Compression

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations were performed to study the evolution of void along different crystallographic orientations of single-crystal copper under shock compression, including \([1\overline{{{\kern 1pt} 1{\kern 1pt} }} 0]\), \([111]\) and \([100]\) orientations. For both \([1\overline{{{\kern 1pt} 1{\kern 1pt} }} 0]\) and \([111]\) directions, the void only shrinks and does not collapse, whereas for \([100]\) direction, the void can gradually shrink until it collapses completely. Dislocations react with each other to form sessile dislocations during the continuous loading of the shock waves, in both \([1\overline{{{\kern 1pt} 1{\kern 1pt} }} 0]\) and [111] directions, and almost all the dislocations are found to be \(\frac{a}{6} < 110 >\) stair-rod partial dislocations which are of sessile type. However, for the [100] orientation, sessile dislocations are mainly \(\frac{a}{3} < 001 >\) Hirth partial dislocations. For \([100]\) direction, the sessile dislocation density is the lowest among the three orientations. Therefore, shock compression along \([100]\) direction is more conducive to plastic deformation of the void. Dislocation slip is responsible for deformation mechanism of the void, where \(\frac{a}{6} < 112 >\) Shockley partial dislocations are firstly generated on the surface of the void, and then they continue to move and multiply, which shall lay the foundation for the formation of stacking faults. Stacking faults sweep through the crystal plane and consequently the void shrinks. This work gives an atomic-scale observation perspective of the evolution of micro-void defects in single-crystal copper under shock compression and provides a clearer explanation for the understanding of the dislocation evolution mechanism behind the deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available within the article. Further requests can be made to the corresponding author.

References

  1. C.F. Tipper, The Fracture of Metals, Metallurgia, 1949, 39, p 133–137.

    Google Scholar 

  2. H.C. Rogers, The Tensile Fracture of Ductile Metals, Trans. Met. Soc. AIME, 1960, 218, p 498–506.

    Google Scholar 

  3. T.W. Barbee Jr., L. Seaman, R.C. Crewdson and D.R. Curran, Dynamic Fracture Criteria for Ductile and Brittle Metals, J. Mater., 1972, 7, p 393–401.

    Google Scholar 

  4. L. Seaman, D.R. Curran and D.A. Shockey, Computational Models for Ductile and Brittle Fracture, J. Appl. Phys., 1976, 47(11), p 4814–4826.

    Article  CAS  Google Scholar 

  5. D.R. Curran, L. Seaman and D.A. Shockey, Dynamic Failure in Solids, Phys. Today, 1977, 30(1), p 46–55.

    Article  CAS  Google Scholar 

  6. C. Hong, S. Fæster, N. Hansen, X. Huang and R.I. Barabash, Non-Spherical Voids and Lattice Reorientation Patterning in a Shock-Loaded Al Single Crystal, Acta Mater., 2017, 134, p 16–30.

    Article  CAS  Google Scholar 

  7. Ma. Dongfang, Wu. Chen Danian, W.H. Shanxing, C. Canyuan and D. Gaotao, Dynamic Experimental Verification of Void Coalescence Criteria, Mater. Sci. Eng. A., 2012, 533, p 96–106.

    Article  CAS  Google Scholar 

  8. B.C. Hornbuckle, S.W. Dean, X. Zhou, A.K. Giri, C.L. Williams, K.N. Solanki, G.B. Thompson and K.A. Darling, Laser Shocking of Nanocrystalline Materials: Revealing the Extreme Pressure Effects on the Microstructural Stability and Deformation Response, Appl. Phys. Lett., 2020, 116, p 231901.

    Article  CAS  Google Scholar 

  9. V.A. Lubarda, M.S. Schneider, D.H. Kalantar, B.A. Remington and M.A. Meyers, Void Growth by Dislocation Emission, Acta Mater., 2024, 52, p 1397–1408.

    Article  CAS  Google Scholar 

  10. M.S. Schneider, B. Kad, D.H. Kalantar, B.A. Remington, E. Kenik, H. Jarmakani and M.A. Meyers, Laser Shock Compression of Copper and Copper–Aluminum Alloys, Int. J. Impact Eng., 2005, 32, p 473–507.

    Article  Google Scholar 

  11. J.C. Crowhurst, M.R. Armstrong, S.D. Gates, J.M. Zaug, H.B. Radousky and N.E. Teslich, Yielding of Tantalum at Strain Rates up to 109 s-1, Appl. Phys. Lett., 2016, 109, p 094102.

    Article  CAS  Google Scholar 

  12. Y. Wang, H. He and L. Wang, Critical Damage Evolution Model for Spall Failure of Ductile Metals, Mech. Mater., 2013, 56, p 131–141.

    Article  CAS  Google Scholar 

  13. J.W. Wilkerson, On the Micromechanics of Void Dynamics at Extreme Rates, Int. J. Plast., 2017, 95, p 21–42.

    Article  Google Scholar 

  14. M. Ponga, M. Ortiz and M.P. Ariz, Finite-Temperature Non-Equilibrium Quasi-Continuum Analysis of Nanovoid Growth in Copper at Low and High Strain Rates, Mech. Mater., 2015, 90, p 253–267.

    Article  Google Scholar 

  15. U. Asim, M.A. Siddiq and M. Demiral, Void Growth in High Strength Aluminium Alloy Single Crystals: a CPFEM Based Study, Model. Simul. Mater. Sci. Eng., 2017, 25, p 035010.

    Article  Google Scholar 

  16. Z.G. Liu, W.H. Wong and T.F. Guo, Void Behaviors from Low to High Triaxialities: Transition from Void Collapse to Void Coalescence, Int. J. Plast., 2016, 84, p 183–202.

    Article  Google Scholar 

  17. X.D. Ren, W.F. Zhou, Y.P. Ren, S.D. Xu, F.F. Liu, S.Q. Yuan, N.F. Ren and J.J. Huang, Dislocation Evolution and Properties Enhancement of GH2036 by Laser Shock Processing: Dislocation Dynamics Simulation and Experiment, Mater. Sci. Eng. A., 2016, 654, p 184–192.

    Article  CAS  Google Scholar 

  18. Y. Liao and G.J. Cheng, Controlled Precipitation by Thermal Engineered Laser Shock Peening and its Effect on Dislocation Pinning: Multiscale Dislocation Dynamics Simulation and Experiments, Acta Mater., 2013, 61, p 1957–1967.

    Article  CAS  Google Scholar 

  19. G. Li, Y. Wang, M. Xiang, Yi. Liao, K. Wang and J. Chen, Shock Response of Nanoporous Magnesium by Molecular Dynamics Simulations, Int. J. Mech. Sci., 2018, 141, p 143–156.

    Article  Google Scholar 

  20. J.F. Tang, J.C. Xiao, L. Deng, W. Li, X.M. Zhang and L. Wang, Shock Wave Propagation, Plasticity, and Void Collapse in Open-Cell Nanoporous Ta, Phys. Chem. Chem. Phys., 2018, 20, p 28039–28048.

    Article  CAS  Google Scholar 

  21. S. Rawat and P.M. Raole, Molecular Dynamics Investigation of Void Evolution Dynamics in Single Crystal Iron at Extreme Strain Rates, Comput. Mater. Sci., 2018, 154, p 393–404.

    Article  CAS  Google Scholar 

  22. V.A. Lubarda, M.S. Schneider, D.H. Kalantar, B.A. Remington and M.A. Meyers, Void Growth by Dislocation Emission, Acta Mater., 2004, 52, p 1397–1408.

    Article  CAS  Google Scholar 

  23. L.P. Dávila, P. Erhart, E.M. Bringa, M.A. Meyers, V.A. Lubarda, M.S. Schneider, R. Becker and M. Kumar, Atomistic Modeling of Shock-Induced Void Collapse in Copper, Appl. Phys. Lett., 2005, 86, p 161902.

    Article  CAS  Google Scholar 

  24. W. Zhu, Z. Song, X. Deng, H. He and X. Cheng, Lattice Orientation Effect on the Nanovoid Growth in Copper Under Shock Loading, Phys. Rev. B., 2007, 75, p 024104.

    Article  CAS  Google Scholar 

  25. T.-T. Zhou, A.-M. He, P. Wang and J.-L. Shao, Spall Damage in Single Crystal Al with Helium Bubbles Under Decaying Shock Loading Via Molecular Dynamics Study, Comput. Mater. Sci., 2019, 162, p 255–267.

    Article  CAS  Google Scholar 

  26. X. Deng, W. Zhu, Y. Zhang, H. He and F. Jing, Configuration Effect on Coalescence of Voids in Single-Crystal Copper Under Shock Loading, Comput. Mater. Sci., 2010, 50, p 234–238.

    Article  CAS  Google Scholar 

  27. X. Peng, W. Zhu, K. Chen, X. Deng and Y. Wei, Molecular Dynamics Simulations of Void Coalescence in Monocrystalline Copper Under Loading and Unloading, Modell. J. Appl. Phys., 2016, 119, p 165901.

    Article  CAS  Google Scholar 

  28. K. Mackenchery, R.R. Valisetty, R.R. Namburu, A. Stukowski, A.M. Rajendran and A.M. Dongare, Dislocation Evolution and Peak Spall Strengths in Single Crystal and Nanocrystalline Cu, J. Appl. Phys., 2016, 119, p 044301.

    Article  CAS  Google Scholar 

  29. G. Agarwal and A.M. Dongare, Defect and damage Evolution During Spallation of Single Crystal Al: Comparison Between Molecular Dynamics and Quasi-Coarse-Grained Dynamics Simulations, Comput. Mater. Sci., 2018, 145, p 68–79.

    Article  CAS  Google Scholar 

  30. S. Galitskiy, D.S. Ivanov and A.M. Dongare, Dynamic Evolution of Microstructure During Laser Shock Loading and Spall Failure of Single Crystal Al at the Atomic Scales, Phys. J. Appl. Phys., 2018, 124, p 205901.

    Article  CAS  Google Scholar 

  31. M. Xiang, J. Cui, Y. Yang, Yi. Liao, K. Wang, Y. Chen and J. Chen, Shock Responses of Nanoporous Aluminum by Molecular Dynamics Simulations, Int. J. Plast., 2017, 97, p 24–45.

    Article  CAS  Google Scholar 

  32. Yi. Liao, M. Xiang, G. Li, K. Wang, X. Zhang and J. Chen, Molecular Dynamics Studies on Energy Dissipation and Void Collapse in Graded Nanoporous Nickel Under Shock Compression, Mech. Mater., 2018, 126, p 13–25.

    Article  Google Scholar 

  33. K.V. Reddy and S. Pal, Shock Velocity-Dependent Elastic-Plastic Collapse of Pre-Existing Stacking Fault Tetrahedron in Single Crystal Cu, Comput. Mater. Sci., 2020, 172, p 109390.

    Article  CAS  Google Scholar 

  34. P. Hirel and Atomsk: A Tool for Manipulating and Converting Atomic Data Files, Comput. Phys. Comm., 2015, 197, p 212–219.

    Article  CAS  Google Scholar 

  35. S. Plimpton and F. Parallel, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comp. Phys., 1995, 117, p 1–19.

    Article  CAS  Google Scholar 

  36. X.W. Zhou, R.A. Johnson and H.N.G. Wadley, Misfit-Energy-Increasing Dislocations in Vapor-Deposited CoFe/NiFe Multilayers, Phys. Rev. B., 2004, 69, p 144113.

    Article  CAS  Google Scholar 

  37. P.N. Mayer and A.E. Mayer, Size Distribution of Pores in Metal Melts at Non-Equilibrium Cavitation and Further Stretching, and Similarity with the Spall Fracture of Solids, Int. J. Heat Mass Transf., 2018, 127, p 643–657.

    Article  CAS  Google Scholar 

  38. G.C. Ma, J.L. Fan and H.R. Gong, Mechanical Behavior of Cu-W Interface Systems Upon Tensile Loading from Molecular Dynamics Simulations, Comput. Mater. Sci., 2018, 152, p 165–168.

    Article  CAS  Google Scholar 

  39. T. Zhang, K. Zhou and Z.Q. Chen, Strain Rate Effect on Plastic Deformation of Nanocrystalline Copper Investigated by Molecular Dynamics, Mater. Sci. Eng. A., 2015, 648, p 23–30.

    Article  CAS  Google Scholar 

  40. K. Zhou, B. Liu, YiJun Yao and K. Zhong, Grain Coarsening in Nanocrystalline Copper with Very Small Grain Size During Tensile Deformation, Mater. Sci. Eng. A., 2014, 595, p 118–123.

    Article  CAS  Google Scholar 

  41. M. Yuasa, T. Nakazawa and M. Mabuchi, Atomic Simulations of Dislocation Emission from Cu/Cu and Co/Cu Grain Boundaries, Mater. Sci. Eng. A., 2010, 528, p 260–267.

    Article  CAS  Google Scholar 

  42. X.W. Zhou, H.N.G. Wadley, R.A. Johson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Matrens and T.F. Kelly, Atomic Scale Structure of Sputtered Metal Multilayers, Acta mater., 2001, 49, p 4005–4015.

    Article  CAS  Google Scholar 

  43. A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO-the Open Visualization Tool, Modell. Simul. Mater. Sci. Eng., 2010, 18(1), p 015012.

    Article  Google Scholar 

  44. A. Stukowski, Structure Identification Methods for Atomistic Simulations of Crystalline Materials, Model. Simul. Mater. Sci. Eng., 2012, 20, p 045021.

    Article  CAS  Google Scholar 

  45. C.L. Kelchner, S.J. Plimpton and J.C. Hamilton, Dislocation Nucleation and Defect Structure During Surface Indentation, Phys. Rev. B., 1998, 58(17), p 11085–11088.

    Article  CAS  Google Scholar 

  46. A. Stukowski, V.V. Bulatov and A. Arsenlis, Automated Identification and Indexing of Dislocations in Crystal Interfaces, Model. Simul. Mater. Sci. Eng., 2012, 20, p 085007.

    Article  Google Scholar 

  47. F. Tang, Z. Jian, S. Xiao, X. Li, L. Wang, B. Huang, H. Deng and Hu. Wangyu, Molecular Dynamics Simulation of Cylindrically Converging Shock Response in Single Crystal Cu, Comput. Mater. Sci., 2020, 183, p 10984.

    Article  CAS  Google Scholar 

  48. F.T. Latypov, A.E. Mayer and V.S. Krasnikov, Dynamics of Growth and Collapse of Nanopores in Copper, INT J. Solids Struct., 2020, 202, p 418–433.

    Article  CAS  Google Scholar 

  49. E.M. Bringa, S. Traiviratana and M.A. Meyers, Void Initiation in fcc Metals: Effect of Loading Orientation and Nanocrystalline Effects, Acta Mater., 2010, 58, p 4458–4477.

    Article  CAS  Google Scholar 

  50. C. Qiao, Y. Guo, Z. Wang, Y. Zheng, R. Zhang, L. Chen, Y.-L. Chen, Su. Wan-Sheng, Yu. Jia and S. Wang, Effect of Body Defect on Mechanical Behaviors of Cu Nanowire Under Tension: A Molecular Dynamics Investigation, J. Mater. Sci., 2017, 52, p 13237–13246.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51871070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanqiu Zhang or Shuyong Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Zhang, Y. & Jiang, S. Atomic Simulation of Crystallographic Orientation Effect on Void Shrinkage and Collapse in Single-Crystal Copper under Shock Compression. J. of Materi Eng and Perform 31, 2991–3003 (2022). https://doi.org/10.1007/s11665-021-06438-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06438-0

Keywords

Navigation