Skip to main content
Log in

A Review on Additive Manufacturing Processes of Inconel 625

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Metal-based additive manufacturing is an emerging low-cost manufacturing method to produce components with complex features. Inconel 625 (IN625) is a nickel-based superalloy and is used in high-temperature application products. IN625 has high strength and corrosion resistance at elevated temperatures. When processed in conventional machining, these materials face excessive tool wear and low material removal rates. Advanced manufacturing processes are exploring to overcome these difficulties. This paper reviews the application of additive manufacturing for the processing of IN625. The resultant microstructure and mechanical behavior of additively manufactured parts with IN625 are studied. Investigation of the material processing using three power sources, such as laser-based, electron beam-based, and electric arc-based, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.

Reprinted from Additive Manufacturing, Vol 27, J.L. Bartlett and X.D. Li, An Overview of Residual Stresses in Metal Powder Bed Fusion, pages 131-149, copyright 2019, with permission from Elsevier (Ref 22). (b). The powder fed laser process setup. Reprinted from Journal of Manufacturing Processes, Vol 43, F. Khodabakhshi, M.H. Farshidianfar, S. Bakhshivash, A.P. Gerlich, and A. Khajepour, Dissimilar Metals Deposition by Directed Energy Based on Powder-Fed Laser Additive Manufacturing, pages 83-97, copyright 2019, with permission from Elsevier (Ref 23). (c). Electron beam additive manufacturing. Reprinted from Additive Manufacturing, Vol 19, M. Galati and L. Iuliano, A Literature Review of Powder-Based Electron Beam Melting Focusing on Numerical Simulations, pages 1-20, copyright 2018, with permission from Elsevier (Ref 24). (d). Wire and arc additive manufacturing setup. Reprinted from Materials Science and Engineering: A, Vol 774, X. Yang, J. Liu, Z. Wang, X. Lin, F. Liu, W. Huang, and E. Liang, Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured AZ31 Magnesium Alloy Using Cold Metal Transfer Process, page 138942, copyright 2020, with permission from Elsevier (Ref 25)

Fig.2

Reprinted from Materials Science and Engineering: A, Vol 764, J. Nguejio, F. Szmytka, S. Hallais, A. Tanguy, S. Nardone, and M. Godino Martinez, Comparison of Microstructure Features and Mechanical Properties for Additive Manufactured and Wrought Nickel Alloys 625, page 138214, copyright 2019, with permission from Elsevier (Ref 40)

Fig 3

Reprinted from Applied Surface Science, Vol 490, B. Zhang, G. Bi, Y. Chew, P. Wang, G. Ma, Y. Liu, and SK. Moon, Comparison of Carbon-Based Reinforcement on Laser Aided Additive Manufacturing Inconel 625 Composites, pages 522-534, copyright 2019, with permission from Elsevier (Ref 55)

Fig 4.

Reinforcement Material Evaluation, pages 2191-2200, copyright 2013, with permission from Elsevier (Ref 58)

Fig 5.

Reprinted from Materials Science and Engineering: A, Vol 615, F.A. List, R.R. Dehoff, L.E. Lowe, and W.J. Sames, Properties of Inconel 625 Mesh Structures Grown by Electron Beam Additive Manufacturing, pages 191-197, copyright 2014, with permission from Elsevier (Ref 60)

Fig 6.

Reprinted from Surface and Coatings Technology, Vol 374, Y.F. Wang, X.Z. Chen, and C.C. Su, Microstructure and Mechanical Properties of Inconel 625 Fabricated by Wire-Arc Additive Manufacturing, pages 116-123, copyright 2019, with permission from Elsevier (Ref 63)

Similar content being viewed by others

References

  1. Y.C. Zhang, W. Jiang, S.T. Tu, X.C. Zhang, Y.J. Ye and R.Z. Wang, Experimental Investigation and Numerical Prediction on Creep Crack Growth Behavior of the Solution Treated Inconel 625 Superalloy, Eng. Fract. Mech., 2018, 199, p 327–342. https://doi.org/10.1016/j.engfracmech.2018.05.048

    Article  Google Scholar 

  2. X. Xu, G. Mi, L. Xiong, P. Jiang, X. Shao and C. Wang, Morphologies, Microstructures and Properties of TiC Particle Reinforced Inconel 625 Coatings Obtained by Laser Cladding with Wire, J. Alloys Compd., 2018, 740, p 16–27. https://doi.org/10.1016/j.jallcom.2017.12.298

    Article  CAS  Google Scholar 

  3. I.S. Cinoglu, A. Charbal and N. Vermaak, (2020) Towards Exploiting Inelastic Design for Inconel 625 under Short-Term Cyclic Loading at 600 °C, Mech. Mater., 2020, 140, p 103219. https://doi.org/10.1016/j.mechmat.2019.103219

    Article  Google Scholar 

  4. J. Huebner, D. Kata, J. Kusiński, P. Rutkowski and J. Lis, Microstructure of Laser Cladded Carbide Reinforced Inconel 625 Alloy for Turbine Blade Application, Ceram. Int., 2017, 43(12), p 8677–8684.

    Article  CAS  Google Scholar 

  5. E.O. Olakanmi, S.T. Nyadongo, K. Malikongwa, S.A. Lawal, A. Botes and S.L. Pityana, Multi-Variable Optimization of the Quality Characteristics of Fiber-Laser Cladded Inconel-625 Composite Coatings, Surf. Coat. Technol., 2019, 357, p 289–303. https://doi.org/10.1016/j.surfcoat.2018.09.063

    Article  CAS  Google Scholar 

  6. F.A. Khalid, N. Hussain and A.H. Qureshi, Microstructural Study on Oxidation of Aluminized Coating on Inconel 625, J. Mater. Eng. Perform., 2002, 11(2), p 211–214.

    Article  CAS  Google Scholar 

  7. L. Mataveli Suave, J. Cormier, D. Bertheau, P. Villechaise, A. Soula, Z. Hervier and F. Hamon, High Temperature Low Cycle Fatigue Properties of Alloy 625, Mater. Sci. Eng. A, 2016, 650, p 161–170. https://doi.org/10.1016/j.msea.2015.10.023

    Article  CAS  Google Scholar 

  8. M. Naghiyan Fesharaki, R. Shoja-Razavi, H.A. Mansouri and H. Jamali, Evaluation of the Hot Corrosion Behavior of Inconel 625 Coatings on the Inconel 738 Substrate by Laser and TIG Cladding Techniques, Opt. Laser Technol., 2019, 111, p 744–753. https://doi.org/10.1016/j.optlastec.2018.09.011

    Article  CAS  Google Scholar 

  9. S.S. Sandhu and A.S. Shahi, Metallurgical Wear and Fatigue Performance of Inconel 625 Weld Claddings, J. Mater. Process. Technol., 2016, 233, p 1–8. https://doi.org/10.1016/j.jmatprotec.2016.02.010

    Article  CAS  Google Scholar 

  10. X. Xu, G. Mi, L. Chen, L. Xiong, P. Jiang, X. Shao and C. Wang, Research on Microstructures and Properties of Inconel 625 Coatings Obtained by Laser Cladding with Wire, J. Alloys Compd., 2017, 715, p 362–373. https://doi.org/10.1016/j.jallcom.2017.04.252

    Article  CAS  Google Scholar 

  11. E. Pavithra and V.S. Senthil Kumar, Microstructural Evolution of Hydroformed Inconel 625 Bellows, J. Alloys Compd., 2016, 669, p 199–204. https://doi.org/10.1016/j.jallcom.2016.02.011

    Article  CAS  Google Scholar 

  12. M. Liu, W.J. Zheng, J.Z. Xiang, Z.G. Song, E.X. Pu and H. Feng, Grain Growth Behavior of Inconel 625 Superalloy, J. Iron Steel Res. Int., 2016, 23(10), p 1111–1118.

    Article  Google Scholar 

  13. A. Sukumaran, R.K. Gupta and V. Anil Kumar, Effect of Heat Treatment Parameters on the Microstructure and Properties of Inconel-625 Superalloy, J. Mater. Eng. Perform., 2017, 26(7), p 3048–3057.

    Article  CAS  Google Scholar 

  14. K.D. Ramkumar, W.S. Abraham, V. Viyash, N. Arivazhagan and A.M. Rabel, Investigations on the Microstructure, Tensile Strength and High Temperature Corrosion Behaviour of Inconel 625 and Inconel 718 Dissimilar Joints, J. Manuf. Process., 2017, 25, p 306–322. https://doi.org/10.1016/j.jmapro.2016.12.018

    Article  Google Scholar 

  15. M.J. Sohrabi, H. Mirzadeh and M. Rafiei, Solidification Behavior and Laves Phase Dissolution during Homogenization Heat Treatment of Inconel 718 Superalloy, Vacuum, 2018, 154(5), p 235–243.

    Article  CAS  Google Scholar 

  16. E. Hosseini and V.A. Popovich, A Review of Mechanical Properties of Additively Manufactured Inconel 718, Addit. Manuf., 2019, 30, p 100877. https://doi.org/10.1016/j.addma.2019.100877

    Article  CAS  Google Scholar 

  17. A.N.M. Tanvir, M.R.U. Ahsan, C. Ji, W. Hawkins, B. Bates and D.B. Kim, Heat Treatment Effects on Inconel 625 Components Fabricated by Wire + Arc Additive Manufacturing (WAAM)—Part 1: Microstructural Characterization, Int. J. Adv. Manuf. Technol., 2019 https://doi.org/10.1007/s00170-019-03828-6

    Article  Google Scholar 

  18. C. Culmone, G. Smit and P. Breedveld, Additive Manufacturing of Medical Instruments: A State-of-the-Art Review, Addit. Manuf., 2019, 27(2), p 461–473. https://doi.org/10.1016/j.addma.2019.03.015

    Article  Google Scholar 

  19. A. Gisario, M. Kazarian, F. Martina and M. Mehrpouya, Metal Additive Manufacturing in the Commercial Aviation Industry: A Review, J. Manuf. Syst., 2019, 53(6), p 124–149. https://doi.org/10.1016/j.jmsy.2019.08.005

    Article  Google Scholar 

  20. C. Zhang, F. Chen, Z. Huang, M. Jia, G. Chen, Y. Ye, Y. Lin, W. Liu, B. Chen, Q. Shen, L. Zhang and E.J. Lavernia, Additive Manufacturing of Functionally Graded Materials: A Review, Mater. Sci. Eng. A, 2019, 764(5), p 138209. https://doi.org/10.1016/j.msea.2019.138209

    Article  CAS  Google Scholar 

  21. W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928.

    Article  CAS  Google Scholar 

  22. J.L. Bartlett and X. Li, An Overview of Residual Stresses in Metal Powder Bed Fusion, Addit. Manuf., 2019, 27(1), p 131–149. https://doi.org/10.1016/j.addma.2019.02.020

    Article  Google Scholar 

  23. F. Khodabakhshi, M.H. Farshidianfar, S. Bakhshivash, A.P. Gerlich and A. Khajepour, Dissimilar Metals Deposition by Directed Energy Based on Powder-Fed Laser Additive Manufacturing, J. Manuf. Process., 2019, 43, p 83–97. https://doi.org/10.1016/j.jmapro.2019.05.018

    Article  Google Scholar 

  24. M. Galati and L. Iuliano, A Literature Review of Powder-Based Electron Beam Melting Focusing on Numerical Simulations, Addit. Manuf., 2018, 19, p 1–20. https://doi.org/10.1016/j.addma.2017.11.001

    Article  Google Scholar 

  25. X. Yang, J. Liu, Z. Wang, X. Lin, F. Liu, W. Huang and E. Liang, Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured AZ31 Magnesium Alloy Using Cold Metal Transfer Process, Mater. Sci. Eng. A, 2020, 774, p 138942. https://doi.org/10.1016/j.msea.2020.138942

    Article  CAS  Google Scholar 

  26. L. Scime and J. Beuth, Melt Pool Geometry and Morphology Variability for the Inconel 718 Alloy in a Laser Powder Bed Fusion Additive Manufacturing Process, Addit. Manuf., 2019, 29(8), p 100830. https://doi.org/10.1016/j.addma.2019.100830

    Article  CAS  Google Scholar 

  27. A.N. Jinoop, C.P. Paul, S.K. Mishra and K.S. Bindra, Laser Additive Manufacturing Using Directed Energy Deposition of Inconel-718 Wall Structures with Tailored Characteristics, Vacuum, 2019, 166(3), p 270–278. https://doi.org/10.1016/j.vacuum.2019.05.027

    Article  CAS  Google Scholar 

  28. S. Sui, J. Chen, E. Fan, H. Yang, X. Lin and W. Huang, The Influence of Laves Phases on the High-Cycle Fatigue Behavior of Laser Additive Manufactured Inconel 718, Mater. Sci. Eng. A, 2017, 695(6), p 6–13. https://doi.org/10.1016/j.msea.2017.03.098

    Article  CAS  Google Scholar 

  29. K. Moussaoui, W. Rubio, M. Mousseigne, T. Sultan and F. Rezai, Effects of Selective Laser Melting Additive Manufacturing Parameters of Inconel 718 on Porosity, Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2018, 735(8), p 182–190. https://doi.org/10.1016/j.msea.2018.08.037

    Article  CAS  Google Scholar 

  30. Y. Zhang, L. Wu, X. Guo, S. Kane, Y. Deng, Y.G. Jung, J.H. Lee and J. Zhang, Additive Manufacturing of Metallic Materials: A Review, J. Mater. Eng. Perform., 2018, 27(1), p 1–13.

    Article  CAS  Google Scholar 

  31. S.H. Sun, Y. Koizumi, T. Saito, K. Yamanaka, Y.P. Li, Y. Cui and A. Chiba, Electron Beam Additive Manufacturing of Inconel 718 Alloy Rods: Impact of Build Direction on Microstructure and High-Temperature Tensile Properties, Addit. Manuf., 2018, 23(8), p 457–470. https://doi.org/10.1016/j.addma.2018.08.017

    Article  CAS  Google Scholar 

  32. A.T. Polonsky, M.P. Echlin, W.C. Lenthe, R.R. Dehoff, M.M. Kirka and T.M. Pollock, Defects and 3D Structural Inhomogeneity in Electron Beam Additively Manufactured Inconel 718, Mater. Charact., 2018, 143(2), p 171–181.

    Article  CAS  Google Scholar 

  33. W.J. Sames, K.A. Unocic, G.W. Helmreich, M.M. Kirka, F. Medina, R.R. Dehoff and S.S. Babu, Feasibility of in Situ Controlled Heat Treatment (ISHT) of Inconel 718 during Electron Beam Melting Additive Manufacturing, Addit. Manuf., 2017, 13, p 156–165. https://doi.org/10.1016/j.addma.2016.09.001

    Article  CAS  Google Scholar 

  34. X. Zhang, K. Wang, Q. Zhou, J. Ding, S. Ganguly, G. Marzio, D. Yang, X. Xu, P. Dirisu and S.W. Williams, Microstructure and Mechanical Properties of TOP-TIG-Wire and Arc Additive Manufactured Super Duplex Stainless Steel (ER2594), Mater. Sci. Eng. A, 2019, 762(8), p 138097. https://doi.org/10.1016/j.msea.2019.138097

    Article  CAS  Google Scholar 

  35. D. Ding, Z. Pan, D. Cuiuri, H. Li, S. Van Duin and N. Larkin, Bead Modelling and Implementation of Adaptive MAT Path in Wire and Arc Additive Manufacturing, Robot. Comput. Integr. Manuf., 2016, 39, p 32–42. https://doi.org/10.1016/j.rcim.2015.12.004

    Article  Google Scholar 

  36. B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, J. Xu and J. Norrish, A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement, J. Manuf. Process., 2018, 35(8), p 127–139. https://doi.org/10.1016/j.jmapro.2018.08.001

    Article  Google Scholar 

  37. X. Yin, G. He, W. Meng, Z. Xu, L. Hu and Q. Ma, Comparison Study of Low-Heat-Input Wire Arc-Fabricated Nickel-Based Alloy by Cold Metal Transfer and Plasma Arc, J. Mater. Eng. Perform., 2020, 29(7), p 4222–4232. https://doi.org/10.1007/s11665-020-04942-3

    Article  CAS  Google Scholar 

  38. Y. Ali, P. Henckell, J. Hildebrand, J. Reimann, J.P. Bergmann and S. Barnikol-Oettler, Wire Arc Additive Manufacturing of Hot Work Tool Steel with CMT Process, J. Mater. Process. Technol., 2018, 2019(269), p 109–116. https://doi.org/10.1016/j.jmatprotec.2019.01.034

    Article  CAS  Google Scholar 

  39. S. Selvi, A. Vishvaksenan and E. Rajasekar, Cold Metal Transfer (CMT) Technology - An Overview, Def. Technol., 2018, 14(1), p 28–44. https://doi.org/10.1016/j.dt.2017.08.002

    Article  Google Scholar 

  40. J. Nguejio, F. Szmytka, S. Hallais, A. Tanguy, S. Nardone and M. Godino Martinez, Comparison of Microstructure Features and Mechanical Properties for Additive Manufactured and Wrought Nickel Alloys 625, Mater. Sci. Eng. A, 2019, 764(5), p 138214. https://doi.org/10.1016/j.msea.2019.138214

    Article  CAS  Google Scholar 

  41. X.Y. Fang, H.Q. Li, M. Wang, C. Li and Y.B. Guo, Characterization of Texture and Grain Boundary Character Distributions of Selective Laser Melted Inconel 625 Alloy, Mater. Charact., 2017, 2018(143), p 182–190.

    Google Scholar 

  42. C. Pleass and S. Jothi, Influence of Powder Characteristics and Additive Manufacturing Process Parameters on the Microstructure and Mechanical Behaviour of Inconel 625 Fabricated by Selective Laser Melting, Addit. Manuf., 2018, 24(5), p 419–431. https://doi.org/10.1016/j.addma.2018.09.023

    Article  CAS  Google Scholar 

  43. C.J. Hassila, P. Harlin and U. Wiklund, Rolling Contact Fatigue Crack Propagation Relative to Anisotropies in Additive Manufactured Inconel 625, Wear, 2018, 2019(426–427), p 1837–1845. https://doi.org/10.1016/j.wear.2019.01.085

    Article  CAS  Google Scholar 

  44. M. Cabrini, S. Lorenzi, C. Testa, F. Brevi, S. Biamino, P. Fino, D. Manfredi, G. Marchese, F. Calignano and T. Pastore, Microstructure and Selective Corrosion of Alloy 625 Obtained by Means of Laser Powder Bed Fusion, Materials (Basel), 2019, 12(11), p 1–11.

    Google Scholar 

  45. K. Gola, B. Dubiel and I. Kalemba-Rec, Microstructural Changes in Inconel 625 Alloy Fabricated by Laser-Based Powder Bed Fusion Process and Subjected to High-Temperature Annealing, J. Mater. Eng. Perform., 2020, 29(3), p 1528–1534. https://doi.org/10.1007/s11665-020-04605-3

    Article  CAS  Google Scholar 

  46. L. Qin, C. Chen, M. Zhang, K. Yan, G. Cheng, H. Jing and X. Wang, The Microstructure and Mechanical Properties of Deposited-IN625 by Laser Additive Manufacturing, Rapid Prototyp. J., 2017, 23(6), p 1119–1129.

    Article  Google Scholar 

  47. S. Li, Q. Wei, Y. Shi, C.K. Chua, Z. Zhu and D. Zhang, Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting, J. Mater. Sci. Technol., 2015, 31(9), p 946–952. https://doi.org/10.1016/j.jmst.2014.09.020

    Article  CAS  Google Scholar 

  48. A. Kreitcberg, V. Brailovski and S. Turenne, Effect of Heat Treatment and Hot Isostatic Pressing on the Microstructure and Mechanical Properties of Inconel 625 Alloy Processed by Laser Powder Bed Fusion, Mater. Sci. Eng. A, 2016, 689, p 1–10. https://doi.org/10.1016/j.msea.2017.02.038

    Article  CAS  Google Scholar 

  49. C.U. Brown, G. Jacob, M. Stoudt, S. Moylan, J. Slotwinski and A. Donmez, Interlaboratory Study for Nickel Alloy 625 Made by Laser Powder Bed Fusion to Quantify Mechanical Property Variability, J. Mater. Eng. Perform., 2016, 25(8), p 3390–3397.

    Article  CAS  Google Scholar 

  50. A. Theriault, L. Xue and J.R. Dryden, Fatigue Behavior of Laser Consolidated IN-625 at Room and Elevated Temperatures, Mater. Sci. Eng. A, 2009, 516(1–2), p 217–225.

    Article  Google Scholar 

  51. D.B. Witkin, D.N. Patel, H. Helvajian, L. Steffeney and A. Diaz, Surface Treatment of Powder-Bed Fusion Additive Manufactured Metals for Improved Fatigue Life, J. Mater. Eng. Perform., 2019, 28(2), p 681–692. https://doi.org/10.1007/s11665-018-3732-9

    Article  CAS  Google Scholar 

  52. I. Koutiri, E. Pessard, P. Peyre, O. Amlou and T. De Terris, Influence of SLM Process Parameters on the Surface Finish, Porosity Rate and Fatigue Behavior of as-Built Inconel 625 Parts, J. Mater. Process. Technol., 2018, 255, p 536–546. https://doi.org/10.1016/j.jmatprotec.2017.12.043

    Article  CAS  Google Scholar 

  53. N. Alloy, Z. Tian, C. Zhang, D. Wang, W. Liu, and X. Fang, A Review on Laser Powder Bed Fusion of Inconel 625, Appl. Scien, (2020)

  54. A. Çifçi, A critical review of the material, Socio-economic organ of the Urartian Kingdom. A. Çifçi Ed., BRILL, 2017, p 1–27

    Chapter  Google Scholar 

  55. B. Zhang, G. Bi, Y. Chew, P. Wang, G. Ma, Y. Liu and S.K. Moon, Comparison of Carbon-Based Reinforcement on Laser Aided Additive Manufacturing Inconel 625 Composites, Appl. Surf. Sci., 2019, 490, p 522–534. https://doi.org/10.1016/j.apsusc.2019.06.008

    Article  CAS  Google Scholar 

  56. C. Hong, D. Gu, D. Dai, M. Alkhayat, W. Urban, P. Yuan, S. Cao, A. Gasser, A. Weisheit, I. Kelbassa, M. Zhong and R. Poprawe, Laser Additive Manufacturing of Ultrafine TiC Particle Reinforced Inconel 625 Based Composite Parts: Tailored Microstructures and Enhanced Performance, Mater. Sci. Eng. A, 2015, 635, p 118–128. https://doi.org/10.1016/j.msea.2015.03.043

    Article  CAS  Google Scholar 

  57. B. Zhang, G. Bi, P. Wang, J. Bai, Y. Chew and M.S. Nai, Microstructure and Mechanical Properties of Inconel 625/Nano-TiB2 Composite Fabricated by LAAM, Mater. Des., 2016, 111, p 70–79. https://doi.org/10.1016/j.matdes.2016.08.078

    Article  CAS  Google Scholar 

  58. D.E. Cooper, N. Blundell, S. Maggs and G.J. Gibbons, Additive Layer Manufacture of Inconel 625 Metal Matrix Composites, Reinforcement Material Evaluation, J. Mater. Process. Technol., 2013, 213(12), p 2191–2200. https://doi.org/10.1016/j.jmatprotec.2013.06.021

    Article  CAS  Google Scholar 

  59. M. Galati, A. Snis and L. Iuliano, Powder Bed Properties Modelling and 3D Thermo-Mechanical Simulation of the Additive Manufacturing Electron Beam Melting Process, Addit. Manuf., 2019, 30, p 100897. https://doi.org/10.1016/j.addma.2019.100897

    Article  Google Scholar 

  60. F.A. List, R.R. Dehoff, L.E. Lowe and W.J. Sames, Properties of Inconel 625 Mesh Structures Grown by Electron Beam Additive Manufacturing, Mater. Sci. Eng. A, 2014, 615, p 191–197. https://doi.org/10.1016/j.msea.2014.07.051

    Article  CAS  Google Scholar 

  61. J.A. Gonzalez, J. Mireles, S.W. Stafford, M.A. Perez, C.A. Terrazas and R.B. Wicker, Characterization of Inconel 625 Fabricated Using Powder-Bed-Based Additive Manufacturing Technologies, J. Mater. Process. Technol., 2018, 2019(264), p 200–210.

    Google Scholar 

  62. D. Jafari, T.H.J. Vaneker and I. Gibson, Wire and Arc Additive Manufacturing: Opportunities and Challenges to Control the Quality and Accuracy of Manufactured Parts, Mater. Des., 2021, 202, p 109471. https://doi.org/10.1016/j.matdes.2021.109471

    Article  Google Scholar 

  63. W. Yangfan, C. Xizhang and S. Chuanchu, Microstructure and Mechanical Properties of Inconel 625 Fabricated by Wire-Arc Additive Manufacturing, Surf. Coat. Technol., 2019, 374(10), p 116–123. https://doi.org/10.1016/j.surfcoat.2019.05.079

    Article  CAS  Google Scholar 

  64. J.F. Wang, Q.J. Sun, H. Wang, J.P. Liu and J.C. Feng, Effect of Location on Microstructure and Mechanical Properties of Additive Layer Manufactured Inconel 625 Using Gas Tungsten Arc Welding, Mater. Sci. Eng. A, 2016, 676, p 395–405. https://doi.org/10.1016/j.msea.2016.09.015

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somasundaram Kumanan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmuhilan, M., Kumanan, S. A Review on Additive Manufacturing Processes of Inconel 625. J. of Materi Eng and Perform 31, 2583–2592 (2022). https://doi.org/10.1007/s11665-021-06427-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06427-3

Keywords

Navigation