Skip to main content
Log in

An Investigation on Microstructures and Mechanical Properties of Twinning-Induced Plasticity Steels Prepared by Directional Solidification

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The mechanical behaviors and microstructural characteristics of three twinning-induced plasticity (TWIP) steels prepared using directional solidification at withdrawal rates of 3, 8, and 15 µms−1 (abbreviated as DS3, DS8, and DS15, respectively) were investigated. The results showed that all the samples solidified steadily in a cellular growth mode. The dendrite spacing decreased on increasing the withdrawal rate, but eliminated grains resulted from increased growth competition. At a low strain rate of 2.27×10−3 s−1, DS8 exhibited the best mechanical properties because of the adequately stimulated TWIP effect with well-developed twin structures and good deformation synergy between columnar grains being conducive to uniform stress distribution. Therefore, the work hardening ability significantly improved, with the highest working hardening exponent, ni, obtained at a high strain level. This was accompanied by a remarkably enhanced uniform plastic deformation ability. A weakened TWIP effect occurred due to suppressed twinning with fewer and nonuniform twins structures at a high strain rate of 3.79×10-1 s-1. The high strain rate was evident to be not conducive to the activation of planar slip for directionally solidified samples, resulting in fewer and inhomogeneous slip systems. This effectively weakened twinning with relatively strong dislocation gliding instead. This remarkably decreased all the ni values in the medium-to-high strain range, leading to a significantly decreased plastic deformation ability and finally resulting in severely degraded plasticity, especially for DS8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11.

Similar content being viewed by others

Reference

  1. O. Grassel, L. Kruger, G. Frommeyer and L.W. Meyer, High Strength Fe-Mn-(Al, Si)TRIP/TWIP Steels Development-Properties-Application, Int. J. Plastic., 2000, 16, p 1391–1409.

    Article  CAS  Google Scholar 

  2. G. Frommeyer, U. Brux and P. Neumann, Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purpose, TSIJ Int., 2003, 43(3), p 438–446.

    CAS  Google Scholar 

  3. S. Vercammen, B. Blanpain, B.C.D. Cooman and P. Wollantsa, Cold Rolling Behavior of an Austenitic Fe-30Mn-3Al-3Si TWIP-Steel: The Importance of Deformation Twinning, Acta Mater., 2004, 52, p 2005–2012.

    Article  CAS  Google Scholar 

  4. M. Koyama, T. Sawaguchi and K. Tsuzaki, Selective Appearance of ε-martensitic Transformation and Dynamic Strain Aging in Fe-Mn-C Austenitic Steels, Phil. Mag. Lett., 2012, 92, p 145–152.

    Article  CAS  Google Scholar 

  5. S.K. Mishra, S.M. Tiwari, A.M. Kumar and L.G. Hector Jr., Effect of Strain and Strain Path on Texture and Twin Development in Austenitic Steel with Twinning-Induced Plasticity, Metall. Mater. Trans. A., 2012, 43A, p 1598–1609.

    Article  CAS  Google Scholar 

  6. V. Shterner, A. Molotnikov, I. Timokhina, Y. Estrin and H. Beladi, A Constitutive Model of the Deformation Behavior of Twinning Induced Plasticity (TWIP) Steel at Different Temperatures, Mater. Sci. Eng. A., 2014, 613, p 224–231.

    Article  CAS  Google Scholar 

  7. D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, C. Oskay and J.E. Wittig, The Influence of Manganese Content on the Stacking Fault and Austenite/ε-martensite Interfacial Energies in Fe-Mn-(Al-Si) Steels Investigated by Experiment and Theory, Acta Mater., 2014, 68, p 238–253.

    Article  CAS  Google Scholar 

  8. S. Curtze and V.T. Kuokkala, Dependence of Tensile Deformation Behavior of TWIP Steels on Stacking Fault Energy, Temperature and Strain Rate, Acta Mater., 2010, 58(15), p 5129–5141.

    Article  CAS  Google Scholar 

  9. Y. Ha, H. Kim, K.H. Kwon, S.G. Lee, S. Lee and N.J. Kim, Microstructural Evolution in Fe-22Mn-0.4C Twinning-Induced Plasticity Steel During High Strain Rate Deformation, Metall. Mater. Trans. A., 2005, 46, p 545–548.

    Article  CAS  Google Scholar 

  10. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot and N. Guelton, Correlations Between the Calculated Stacking Fault Energy and the Plasticity Mechanisms in Fe-Mn-C Alloys, Mater. Sci. Eng. A., 2004, 387-389, p 158–162.

    Article  CAS  Google Scholar 

  11. A. Saeed-Akbari, J. Imlau, U. Prahl and W. Bleck, Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels, Metall. Mater. Trans. A., 2009, 40A, p 3076–3090.

    Article  CAS  Google Scholar 

  12. C. Haase, L.A. Barralesmora, D.A. Molodov and G. Gottstein, Tailoring the Mechanical Properties of a Twinning-Induced Plasticity Steel by Retention of Deformation Twins During Heat Treatment, Metall. Mater. Trans. A., 2013, 44, p 4445–4449.

    Article  CAS  Google Scholar 

  13. P. Kusakin, A. Belyakov, C. Haase, R. Kaibysheva and D.A. Molodovb, Microstructure Evolution and Strengthening Mechanisms of Fe-23Mn-0.3C-1.5Al TWIP Steel During Cold Rolling, Mater. Sci. Eng. A., 2014, 617, p 52–60.

    Article  CAS  Google Scholar 

  14. Y. Yang, C.F. Li and K.H. Song, Effect of Strain Rate on the Microstructures and Properties of Hot-Rolled TWIP Steel in the Solution Condition, Adv. Mater. Res., 2012, 430–432, p 256-259.

    Article  CAS  Google Scholar 

  15. Y.I. Wei-Fa, D.Y. Zhu, H.U. Zhen-Ming, Z.B. Yang and S.M. Lin, Effect of Hot Rolling Deformation on Microstructure Defects and Mechanical Properties of High Carbon TWIP Steel, Mater. Sci. Tech-lond., 2011, 19, p 45–49.

    Google Scholar 

  16. O. Bouaziz, C.P. Scott and G. Petitgand, Effect of Grain and Twin Boundaries on the Hardening Mechanisms of Twinning-Induced Plasticity Steels, Scr. Mater., 2009, 60, p 714–716.

    Article  CAS  Google Scholar 

  17. R. Ueji, N. Tsuchida, H. Fujii, D. Kondo and K. Kunishige, Effect of Grain Size on Tensile Properties of TWIP Steel, J Jpn I Met., 2007, 71(9), p 815–821.

    Article  CAS  Google Scholar 

  18. G. Dini, A. Najafizadeh, R. Ueji and S.M. Monir-Vaghefi, Improved Tensile Properties of Partially Recrystallized Submicron Grained TWIP Steel, Mater. Lett., 2010, 64, p 15–18.

    Article  CAS  Google Scholar 

  19. G. Dini, A. Najafizadeh, R. Ueji and S.M. Monir-Vaghefi, Tensile Deformation Behavior of High Manganese Austenitic Steel: The Role of Grain Size, Mater Des., 2010, 31, p 3395–3402.

    Article  CAS  Google Scholar 

  20. T. Lee, M. Koyama, K. Tsuzaki, Y.H. Lee and C.S. Lee, Tensile Deformation Behavior of Fe-Mn-C TWIP Steel with Ultrafine Elongated Grain Structure, Mater Lett., 2012, 75, p 169–171.

    Article  CAS  Google Scholar 

  21. L. Wang, J.A. Benito, J. Calvo and J.M. Cabrera, Equal Channel Angular Pressing of a TWIP Steel: Microstructure and Mechanical Response, J Mater Sci., 2017, 52, p 6291–6309.

    Article  CAS  Google Scholar 

  22. W.H. Jiang, X.F. Sun, H.R. Guan and Z.Q. Hu, Influence of high-Temperature Air Pre-exposure on Mechanical Strength of a Directionally Solidified Cobalt-Base Superalloy, J. Mater Sci., 2001, 36(4), p 859–863.

    Article  CAS  Google Scholar 

  23. H. Bei, G.M. Pharr and E.P. George, A Review of Directionally Solidified Intermetallic Composites for High-Temperature Structural Applications, J Mater Sci., 2004, 39(12), p 3975–3984.

    Article  CAS  Google Scholar 

  24. X.B. Zhao, L. Liu, Z.H. Yu, W.G. Zhang, J. Zhang and H.G. Fu, Influence of Directional Solidification Variables on the Microstructure and Crystal Orientation of AM3 Under High Thermal Gradient, J Mater Sci., 2009, 45(22), p 6101–6107.

    Article  CAS  Google Scholar 

  25. J.J. Tang and X. Xue, Phase-field Simulation of Directional Solidification of a Binary Alloy under Different Boundary Heat Flux Conditions, J. Mater Sci., 2009, 44(3), p 745–753.

    Article  CAS  Google Scholar 

  26. H.R. Zhang, X.X. Tang, L. Zhou, M. Gao, C.G. Zhou and H. Zhang, Interactions Between Ni-44Ti-5Al-2Nb-Mo Alloy and Oxide Ceramics During Directional Solidification Process, J. Mater Sci., 2012, 47, p 6451–6458.

    Article  CAS  Google Scholar 

  27. Y. Tomita and K. Okabayashi, Tensile Stress-Strain Analysis of Cold Worked Metals and Steels and Dual-Phase Steels, Metall. Mater. Trans. A., 1985, 16, p 865–872.

    Article  Google Scholar 

  28. M.S. Nagorka, C.G. Levi, G.E. Lucas and S.D. Ridder, The Potential of Rapid Solidification in Oxide-Dispersion-Strengthened Copper Alloy Development, Mater. Sci. Eng. A., 1991, 142(2), p 277–289.

    Article  Google Scholar 

  29. Z. Jiang, J. Lian and J. Chen, Strain Hardening Behaviour and its Relationship to Tensile Mechanical Properties of Dual Phase Steel, Mater. Sci. Technol., 1992, 8, p 1075–1081.

    Article  CAS  Google Scholar 

  30. M. Umemoto, Z.G. Liu, S. Sugimoto and K. Tsuchiya, Tensile Stress-Strain Analysis of Single-Structure Steels, Metall. Mater. Trans. A., 2000, 31, p 1785–1794.

    Article  Google Scholar 

  31. G. Dini, R. Ueji, A. Najafizadeh and S.M. Monir-Vaghefi, Flow Stress Analysis of TWIP Steel via the XRD Measurement of Dislocation Density, Mater. Sci. Eng. A., 2010, 527, p 2759–2763.

    Article  CAS  Google Scholar 

  32. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy and D. Barbier, High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships, Curr. Opin. Solid State Mater. Sci., 2011, 15, p 141–168.

    Article  CAS  Google Scholar 

  33. I. Gutierrez-Urrutia and D. Raabe, Multistage Strain Hardening Through Dislocation Substructure and Twinning in a High Strength and Ductile Weight-Reduced Fe-Mn-Al-C Steel, Acta Mater., 2012, 60, p 5791–5802.

    Article  CAS  Google Scholar 

  34. D.A. Hughes, N. Hansen and D.J. Bammann, Geometrically Necessary Boundaries, Incidental Dislocation Boundaries and Geometrically Necessary Dislocations, Scripta Mater., 2003, 48, p 147–153.

    Article  CAS  Google Scholar 

  35. K. Huang and R.E. Logé, A Review of Dynamic Recrystallization Phenomena in Metallic Materials, Mater Des., 2016, 111, p 548–574.

    Article  CAS  Google Scholar 

  36. L.S. Toth, Y. Estrin, R. Lapovok and C. Gu, A Model of Grain Fragmentation Based on Lattice Curvature, Acta Mater., 2010, 58, p 1782–1794.

    Article  CAS  Google Scholar 

  37. I. Gutierrez-Urrutia, S. Zaefferer and D. Raabe, The Effect of Grain Size and Grain Orientation on Deformation Twinning in a Fe-22wt.%Mn-06wt.%C TWIP Steel, Mater. Sci. Eng. A, 2010, 527, p 3552–60.

    Article  CAS  Google Scholar 

  38. E.E. Pattersona, D.P. Fielda and Y.D. Zhang, Characterization of Twin Boundaries in an Fe-17.5Mn-0.56C Twinning Induced Plasticity Steel, Mater, Charact., 2013, 85, p 100–110.

    Article  CAS  Google Scholar 

  39. I. Karaman, H. Sehitoglu, H.J. Maier and Y.I. Chumlyakov, Competing Mechanisms and Modeling of Deformation in Austenitic Stainless Steel Single Crystals with and Without Nitrogen, Acta Mater., 2001, 49(19), p 3919–3933.

    Article  CAS  Google Scholar 

  40. X. Wang, J.A. Muñiz-Lerma, O. Sanchez-Mata, M. Attarian Shandiz, N. Brodusch, R. Gauvin and M. Brochu, Characterization of Single Crystalline Austenitic Stainless Steel Thin Struts Processed by Laser Powder Bed Fusion, Scr. Mater., 2019, 163, p 51–56.

    Article  CAS  Google Scholar 

  41. D. Raabe, M. Sachtleber, H. Weiland, G. Scheele and Z. Zhao, Grain-Scale Micromechanics of Polycrystal Surfaces During Plastic Straining, Acta Mater., 2003, 51, p 1539–1560.

    Article  CAS  Google Scholar 

  42. I. Karaman, H. Sehitoglu, K. Gall, Y.I. Chumlyakov and H.J. Maier, Deformation of Single Crystal Hadfield Steel by Twinning and Slip, Acta Mater., 2000, 48, p 1345–1359.

    Article  CAS  Google Scholar 

  43. H. Beladi, I.B. Timokhina, Y. Estrin, J. Kim, B.C. De Cooman and S.K. Kim, Orientation Dependence of Twinning and Strain Hardening Behaviour of a High Manganese Twinning Induced Plasticity Steel with Polycrystalline Structure Acta, Materialia, 2011, 59, p 7787–7799.

    CAS  Google Scholar 

  44. N.P. Gurao, P. Kumar, B. Bhattacharya, A. Haldar and S. Suwas, Evolution of Crystallographic Texture and Microstructure During Cold Rolling of Twinning-Induced Plasticity (TWIP) Steel: Experiments and Simulations, Metall. Mater. Trans. A, 2012, 43, p 5193–5201.

    Article  CAS  Google Scholar 

  45. V. Tari, A.D. Rollett, H.E. Kadiri, H. Beladi, A.L. Oppedal and R.L. King, The Effect of Deformation Twinning on Stress Localization in a Three Dimensional TWIP Steel Microstructure, Modelling Simul. Mater. Sci. Eng., 2015, 23, p 045010.

    Article  CAS  Google Scholar 

  46. M.X. Huang, Z.Y. Liang and Z.C. Luo, Critical Assessment 15: Science of Deformation and Failure Mechanisms in Twinning Induced Plasticity Steels, Mater. Sci. Technol., 2015, 31, p 1265–12702.

    Article  CAS  Google Scholar 

  47. Z.Y. Liang, Z.C. Luo and M.X. Huang, Temperature Dependence of Strengthening Mechanisms in a Twinning-Induced Plasticity Steel, Int. J. Plast., 2019, 116, p 192–202.

    Article  CAS  Google Scholar 

  48. J.S. Jeong, Y.M. Koo, I.K. Jeong, S.K. Kim and S.K. Kwon, Micro-Structural Study of High-Mn TWIP Steels using Diffraction Profile Analysis, Mater. Sci. Eng. A, 2011, 530, p 128–134.

    Article  CAS  Google Scholar 

  49. A.S. Hamadaa, A. Kisko, A. Khosravifard, M.A. Hassan, L.P. Karjalainen and D. Porter, Ductility and Formability of Three High-Mn TWIP Steels in Quasi-Static and High-Speed Tensile and Erichsen Tests, Mater. Sci. Eng. A, 2018, 712, p 255–265.

    Article  CAS  Google Scholar 

  50. H.R. Abedi, A. Zarei-Hanzaki, S.M. Fatemi-Varzaneh and A.A. Roostaei, The Semi-Solid Tensile Deformation Behavior of Wrought AZ31 Magnesium Alloy, Mater. Des., 2010, 31, p 4386–4391.

    Article  CAS  Google Scholar 

  51. A.R. Khalesian, A. Zarei-Hanzaki, H.R. Abedi and F. Pilehva, An Investigation into the Room Temperature Mechanical Properties and Microstructural Evolution of Thermomechanically Processed TWIP Steel, Mater. Sci. Eng. A., 2014, 596, p 200–206.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was jointly supported by the National Natural Science Foundation of China (51701206), Natural Science Basic Research Program of Shaanxi (2019JQ-833), Anhui Natural Science Foundation (1808085QE166), Special Scientific Research Project of Shanxi Education Committee (19JQ0974), and Doctoral Research Initiation Project of Yan'an University (YDBD2018-21)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Wang.

Ethics declarations

Conflict of interest

The authors declare there is no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wang, W., Huang, Y. et al. An Investigation on Microstructures and Mechanical Properties of Twinning-Induced Plasticity Steels Prepared by Directional Solidification. J. of Materi Eng and Perform 31, 3326–3340 (2022). https://doi.org/10.1007/s11665-021-06423-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06423-7

Keywords

Navigation