Skip to main content
Log in

Durable Coating with Modified Graphene Oxide for Aircraft Structural CIC Application

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Aircraft structural materials corrosion will not only affect flight safety and need great maintenance work, but also cost much money and shorten the service period. A durable aircraft structural corrosion inhibiting compounds (CIC) coating was prepared by introducing dodecyl modified graphene oxide (GO-DDA). The lightweight GO-DDA lamellar can be uniformly dispersed in the CIC-35 matrix, which has consequently led to satisfying corrosion resistance (E: 0.072V, I: 1.18×10-7 A/cm2, and Rp: 6.87×106 Ω·cm2). At a filler content of 2.0 wt.%, the composite coating could maintain a high PE value even after a 30-day of accelerated UV-condensation aging. Given the facility in preparation as well as the superior corrosion resistance, this work will shed light on the further fabrication of composites coatings toward lightweight, high anti-corrosion performance and long-term effectiveness to meet the high requirement in practical applications such as aviation and shipping fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Hashmi: Revisiting Aloha Airline Flight 243: Corrosion Engineer's Stand point. The Story of Aloha Airline Flight 243 Corrosion. (2011)

  2. T. Monetta, A. Acquesta and F. Bellucci, Graphene/Epoxy Coating as Multifunctional Material for Aircraft Structures, Aerospace, 2015, 2, p 423–434.

    Article  Google Scholar 

  3. S.N. Raicheva, B.V. Aleksiev and E.I. Sokolova, The Effect of the Chemical Structure of Some Nitrogen- and Sulphur-Containing Organic Compounds on their Corrosion Inhibiting Action, Corros. Sci., 1993, 34(2), p 343.

    Article  CAS  Google Scholar 

  4. F. Meng, L. Liu, W. Tian, H. Wu, Y. Li, T. Zhang and F. Wang, The Influence of the Chemically Bonded Interface Between Fillers and Binder on the Failure Behaviour of an epoxy Coating Under Marine Alternating Hydrostatic Pressure, Corros. Sci., 2015, 101, p 139.

    Article  CAS  Google Scholar 

  5. Q. Li, X. Bao, J. Sun and S. Cai, Fabrication of Superhydrophobic Composite Coating of Hydroxyapatite/Stearic acid on Magnesium Alloy and its Corrosion Resistance, Antibacterial Adhesion, J. Mater. Sci., 2021, 56, p 5233–5249.

    Article  CAS  Google Scholar 

  6. R. Ding, X. Wang, J. Jiang, T. Gui and W. Li, Study on Evolution of Coating State and Role of Graphene in Graphene-Modified Low-Zinc Waterborne Epoxy Anticorrosion Coating by Electrochemical Impedance Spectroscopy, J. Mater. Eng. Perform., 2017, 26, p 3319–3335.

    Article  CAS  Google Scholar 

  7. Y. Ye, D. Zhang, T. Liu, Z. Liu, J. Pu, W. Liu, H. Zhao, X. Li and L. Wang, Superior Corrosion Resistance and Self-Healable Epoxy Coating Pigmented with Silanzied Trianiline-Intercalated Graphene, Carbon, 2019, 142, p 164–176.

    Article  CAS  Google Scholar 

  8. N.T. Kirkland, T. Schiller, N. Medhekar and N. Birbilis, Exploring Graphene as a Corrosion Protection Barrier, Corros. Sci., 2012, 56, p 1.

    Article  CAS  Google Scholar 

  9. L. Ma, X. Wang, J. Wang, J. Zhang and C. Yin, Graphene Oxide–Cerium Oxide Hybrids for Enhancement of Mechanical Properties and Corrosion Resistance of Epoxy Coatings, J. Mater. Sci., 2021, 56, p 10108–10123.

    Article  CAS  Google Scholar 

  10. S. Hu, M. Lozada-Hidalgo, F.C. Wang, A. Mishchenko, F. Schedin, R.R. Nair, E.W. Hill, D.W. Boukhvalov, M.I. Katsnelson, R.A.W. Dryfe, I.V. Grigorieva, H.A. Wu and A.K. Geim, Proton Transport Through One-Atom-Thick Crystals, Nature, 2014, 516(7530), p 227–230.

    Article  CAS  Google Scholar 

  11. L. Chen, C. Shi, X. Li, Z. Mi, C. Jiang, L. Qiao and A.A. Volinsky: Passivation of Hydrogen Damage Using Graphene Coating on α-Fe 2 O 3 films. Carbon. S0008622317313520 (2017).

  12. C. Cui, A.T.O. Lim and J. Huang, A Cautionary Note on Graphene Anti-Corrosion Coatings, Nat. Nanotechnol., 2017, 12(9), p 834.

    Article  CAS  Google Scholar 

  13. J.H. Park and J.M. Park, Electrophoretic Deposition of Graphene Oxide on Mild Carbon Steel for Anti-Corrosion Application, Surf. Coat. Technol., 2014, 254, p 167.

    Article  CAS  Google Scholar 

  14. Y. Chen, J. Li, W. Yang, S. Gao and R. Cao: Enhanced Corrosion Protective Performance of Graphene Oxide-Based Composite Films on AZ31 Magnesium Alloys in 3.5 wt% NaCl Solution. Appl. Surf. Sci. 493, (2019)

  15. R. Ding, Y. Zheng, W. Li, Haibin, X. Wang, and T. Gui, Study of Water Permeation Dynamics and Anti-Corrosion Mechanism of Graphene/Zinc Coatings. J. Alloys Comp. Interdiscipl. J. Mater. Sci. Solid-state Chem. Phys. (2018)

  16. H. Hayatdavoudi and M. Rahsepar, A Mechanistic Study of the Enhanced Cathodic Protection Performance of Graphene-Reinforced Zinc Rich Nanocomposite Coating for Corrosion Protection of Carbon Steel Substrate. J. Alloys Comp. S0925838817329894 (2017)

  17. B. Ramezanzadeh, M.H.M. Moghadam, N. Shohani and M. Mahdavian, Effects of Highly Crystalline and Conductive Polyaniline/Graphene Oxide Composites on the Corrosion Protection Performance of a Zinc-Rich Epoxy Coating. Chem. Eng. J. 320, (2017)

  18. X. Zhao, Z. Jin, B. Zhang, X. Zhai, S. Liu, X. Sun, Q. Zhu and B. Hou, Effect of Graphene Oxide on Anticorrosion Performance of Polyelectrolyte Multilayer for 2A12 Aluminum Alloy Substrates, Rsc Adv., 2017, 7(54), p 33764.

    Article  CAS  Google Scholar 

  19. S. Saxena, T.A. Tyson, S. Shukla, E. Negusse and P.N. Prasad: Atomic and Electronic Structure of Graphene Oxide, (2010)

  20. D.R. Dreyer, S. Park, C.W. Bielawski and R.S. Ruoff, The Chemistry of Graphene Oxide, Chem. Soc. Rev., 2009, 39(1), p 228.

    Article  Google Scholar 

  21. G. Wei, L.B. Alemany, L. Ci and P.M. Ajayan: New insights into the Structure and Reduction of Graphite Oxide. Nat. Chem.

  22. D. Li, M.B. Müller, S. Gilje, R.B. Kaner and G.G. Wallace, Processable Aqueous Dispersions of Graphene Nanosheets, Nat. Nanotechnol., 2008, 3(2), p 101.

    Article  CAS  Google Scholar 

  23. S. Qin and Q. Xu: Room Temperature Ferromagnetism in N2 plasma Treated Graphene Oxide. J. Alloys Comp. (2017)

  24. S. Pourhashem, A. Rashidi, M.R. Vaezi and M.R. Bagherzadeh: Excellent Corrosion Protection Performance of Epoxy Composite Coatings Filled with Amino-Silane Functionalized Graphene Oxide. Surf. Coat. Technol. 317(Complete), 1 (2017)

  25. X. Zhang, R. Ma, A. Du, Q. Liu, Y. Fan, X. Zhao, J. Wu and X. Cao, Corrosion Resistance of Organic Coating Based on Polyhedral Oligomeric Silsesquioxane-Functionalized Graphene Oxide, Appl. Surf. Sci., 2019, 484, p 814.

    Article  CAS  Google Scholar 

  26. X. Li, C. Zhi, Z. Zhang and H. Dang, Surface-Modification in Situ of Nano-SiO2 and its Structure and Tribological Properties, Appl. Surf. Sci., 2006, 252(22), p 7856.

    Article  CAS  Google Scholar 

  27. L.Q. Xu, W.J. Yang, K.G. Neoh, E.T. Kang and G.D. Fu, Dopamine-Induced Reduction and Functionalization of Graphene Oxide Nanosheets, Macromolecules, 2010, 43(20), p 8336.

    Article  CAS  Google Scholar 

  28. M. Jana, P. Khanra, N.C. Murmu, P. Samanta, J.H. Lee and T. Kuila, Covalent Surface Modification of Chemically Derived Graphene and its Application as Supercapacitor Electrode Material, Phys. Chem. Chem. Phys. Pccp., 2014, 16(16), p 7618.

    Article  CAS  Google Scholar 

  29. F. Najafi, O. Moradi, M. Rajabi, M. Asif, I. Tyagi, S. Agarwal and V.K. Gupta, Thermodynamics of the Adsorption of Nickel Ions from Aqueous Phase Using Graphene Oxide and Glycine Functionalized Graphene Oxide, J. Mol. Liq., 2015, 208, p 106.

    Article  CAS  Google Scholar 

  30. H. Yang, Y. Kwon, T. Kwon, H. Lee and B.J. Kim, “Click” Preparation of CuPt Nanorod-Anchored Graphene Oxide as a Catalyst in Water, Small, 2012, 8(20), p 3161.

    Article  CAS  Google Scholar 

  31. Y.Z. Lu, Y.Y. Jiang, W.T. Wei, H.B. Wu, M.M. Liu, L. Niu and W. Chen, Novel Blue Light Emitting Graphene Oxide Nanosheets Fabricated by Surface Functionalization, J. Mater. Chem., 2012, 22(7), p 2929.

    Article  CAS  Google Scholar 

  32. K. Zhu, X. Li, H. Wang, J. Li and G. Fei, Electrochemical and Anti‐Corrosion Behaviors of Water Dispersible Graphene/Acrylic Modified Alkyd Resin Latex Composites Coated Carbon Steel. J. Appl. Polym. Sci. (2016)

  33. W.S.H. Jr and R.E. Offeman: Preparation of Graphitic Oxide J.am.chem.soc. 8ss0(6), 1339 (1958)

  34. F. Du, R.C. Scogna, W. Zhou, S. Brand, J.E. Fischer and K.I. Winey, Nanotube Networks in Polymer Nanocomposites: Rheology and Electrical Conductivity, Macromolecules, 2004, 37(24), p 9048.

    Article  CAS  Google Scholar 

  35. H.B. Zhang, W.G. Zheng, Q. Yan, Z.G. Jiang and Z.Z. Yu, The Effect of Surface Chemistry of Graphene on Rheological and Electrical Properties of Polymethylmethacrylate Composites, Carbon, 2012, 50(14), p 5117.

    Article  CAS  Google Scholar 

  36. J-M. Thomassin, X. Lou, C. Pagnoulle, A. Saib, L. Bednarz, Multiwalled Carbon Nanotube/Poly(ε-caprolactone) Nanocomposites with Exceptional Electromagnetic Interference Shielding Properties. J. Phys. Chem. C. (2007)

  37. S. Basu, M. Singhi, B.K. Satapathy and M. Fahim, Dielectric, Electrical, and Rheological Characterization of Graphene-Filled Polystyrene Nanocomposites, Polym. Compos., 2013, 34(12), p 2082.

    Article  CAS  Google Scholar 

  38. M. Sabzi, L. Jiang, F. Liu, I. Ghasemi and M. Atai, Graphene Nanoplatelets as poly(lactic acid) Modifier: Linear Rheological Behavior and Electrical Conductivity, J. Mater. Chem. A., 2013, 1(28), p 8253.

    Article  CAS  Google Scholar 

  39. M. El, Achaby, F-E. Arrakhiz, S. Vaudreuil, A. el and Kacem, Mechanical, Thermal, and Rheological Properties of Graphene-Based Polypropylene Nanocomposites Prepared by Melt Mixing. Polym. Compos. (2012)

  40. D. Prasai, J.C. Tuberquia, R.R. Harl, G.K. Jennings and K.I. Bolotin, Graphene: Corrosion-Inhibiting Coating, ACS Nano, 2012, 6(2), p 1102.

    Article  CAS  Google Scholar 

  41. K. Krishnamoorthy, K. Jeyasubramanian, M. Premanathan, G. Subbiah and J.K. Sang, Graphene oxide nanopaint, Carbon, 2014, 72, p 328.

    Article  CAS  Google Scholar 

  42. N. Mahato, M.H. Cho, Graphene integrated Polyaniline Nanostructured Composite Coating for Protecting Steels from Corrosion: Synthesis, Characterization, and Protection Mechanism of the Coating Material in Acidic Environment. Constr. Build. Mater. (2016)

  43. X. Zhou, H. Huang, R. Zhu, X. Sheng, D. Xie and Y. Mei, Facile Modification of Graphene Oxide with Lysine for Improving Anti-Corrosion Performances of Water-Borne Epoxy Coatings. Progr. Org. Coat., 2019, 136, p 105200.

    Article  CAS  Google Scholar 

  44. H. Zhang, H. Zhou, J. Yang, Y. Song and L. Zhao, Synergism of Modified Graphene Oxide to Aircraft Structural Corrosion Inhibiting Compounds Coatings, Progr. Org. Coat., 2019, 132, p 490.

    Article  CAS  Google Scholar 

  45. Q.-L. Meng, H.-C. Liu, Z. Huang, S. Kong, X. Lu, P. Tomkins, P. Jiang and X. Bao, Mixed Conduction Properties of Pristine Bulk Graphene Oxide, Carbon, 2016, 101, p 338–344.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by National Natural Science Foundation of China (grant No. 51873133).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijuan Zhao or Hong Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 83 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, X., Luo, G., Zhang, H. et al. Durable Coating with Modified Graphene Oxide for Aircraft Structural CIC Application. J. of Materi Eng and Perform 31, 3065–3075 (2022). https://doi.org/10.1007/s11665-021-06412-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06412-w

Keywords

Navigation