Skip to main content

Advertisement

Log in

Al-10 wt.%Zn/Al2O3@ZnO Microcapsules for High-Temperature Thermal Storage: Preparation and Thermal Properties

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Thermal energy storage (TES) has widely been used in the industrial field, and the high-operating temperature can improve the heat energy conversion efficiency of TES system in applications. Therefore, it is very necessary to develop high-temperature phase change materials (PCMs). The two-step process of microencapsulated PCMs (MEPCMs) was proposed to form the dense composite shell with durable Al2O3 and ZnO in this work, including boehmite treatment and thermal oxidation treatment. The cross section structure, the surface morphology, phase composition, phase change temperature, thermal durability, cycling stability and the formation mechanism of shell were simultaneously investigated. Furthermore, TEM (transmission electron microscope) observation further confirmed that θ-Al2O3 and ZnO shells were formed on the surface of Al-10 wt.%Zn particles, which is helpful to the durability. After 20 cycles of melting-solidification, the latent heat of Al-10 wt.%Zn/Al2O3@ZnO MEPCMs was 119.6 J/g and MEPCMs maintain the completely spherical shape and the dense surface. Moreover, the cracks and leakage of the capsule particles were hardly observed after 20 cycles of melting-solidification. Therefore, the MEPCMs with excellent heat storage capacity and high thermal stability can be extensively used in the recycling such as industrial waste heat, building energy conservation and aerospace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Reference

  1. L.F. Cabeza, A. Castell, B. Carreneche, C. Barreneche, A.D. Gracia and A.I. Fernández, Materials Used as PCM in Thermal Energy Storage in Buildings: A Review, Renew. Sustain. Energy Rev., 2011, 15(3), p 1675–1695.

    Article  CAS  Google Scholar 

  2. S. Chen and Y. Pan, Influence of Group III and IV Elements on the Hydrogen Evolution Reaction of MoS2 Disulfide, J. Phys. Chem. C., 2021, 125, p 11848–11856.

    Article  CAS  Google Scholar 

  3. Y. Pan, The Influence of N-vacancy on the Electronic and Optical Properties of Bulk InN Nitrides, Mat. Sci. Eng. B-solid., 2021, 271, p 115265.

    Article  CAS  Google Scholar 

  4. S. Chen and Y. Pan, Noble Metal Interlayer-Doping Enhances the Catalytic Activity of 2H-MoS2 from First-Principles Investigations, Int. J. Hydrog. Energ., 2021, 46, p 21040–21049.

    Article  CAS  Google Scholar 

  5. P. Lv, C. Liu and Z. Rao, Review on Clay Mineral-Based Form-Stable Phase Change Materials: Preparation, Characterization and Applications, Renew. Sustain. Energy Rev., 2017, 68, p 707–726.

    Article  CAS  Google Scholar 

  6. T. Nomura, N. Okinaka and T. Akiyama, Technology of Latent Heat Storage for High Temperature Application: A Review, ISIJ Int., 2010, 50, p 1229–1239.

    Article  CAS  Google Scholar 

  7. T. Nomura, N. Okinaka and T. Akiyama, Impregnation of Porous Material with Phase Change Material for Thermal Energy Storage, Mater. Chem. Phys., 2009, 115(2), p 846–850.

    Article  CAS  Google Scholar 

  8. R. Baetens and A. Gustavsen, Phase Change Materials for Building Applications: A State-of-the-Art Review, Energy Build., 2010, 42(9), p 1361–1368.

    Article  Google Scholar 

  9. A. Sharma, V.V. Tyagi and C.R. Chen, Review on Thermal Energy Storage with Phase Change Materials and Applications, Renew. Sustain. Energy Rev., 2009, 13(2), p 318–345.

    Article  CAS  Google Scholar 

  10. D. Ewing, An Investigation of the Application of Phase Change Materials in Practical Thermal Management System, Clemson University, United States-South Carolina, 2011.

    Google Scholar 

  11. E. Oró, De Gracia A, Castell A, Review on Phase Change Materials (PCMs) for Cold Thermal Energy Storage Applications, Appl. Energy., 2012, 99(6), p 513–533.

    Article  CAS  Google Scholar 

  12. J. Huang and X.F. Ke, Molten Salts/Porous-Ceramic Matrix Composites by Spontaneous Melt Infiltration Method as Phase-Change Energy Storage Materials, J. Mater. Sci. Eng., 2007, 25, p 336–340.

    CAS  Google Scholar 

  13. G J Janz. Molten salts handbook. Elsevier, 2013.

  14. P. Zhang, X. Xiao, Z. Meng and M. Li, Heat Transfer Characteristics of a Molten-Salt Thermal Energy Storage Unit with and Without Heat Transfer Enhancement, Appl. Energy., 2015, 137, p 758–772.

    Article  CAS  Google Scholar 

  15. Y. Tian and C.Y. Zhao, A Review of sOlar Collectors and Thermal Energy Storage in Solar Thermal Applications, Appl. Energy., 2013, 104, p 538–553.

    Article  CAS  Google Scholar 

  16. T. Nomura, M. Tsubota, T. Oya, N. Okinaka and T.J.A.T.E. Akiyama, Heat Storage in Direct-Contact Heat Exchanger with Phase Change Material, Appl. Therm. Eng., 2013, 50(1), p 26–34.

    Article  CAS  Google Scholar 

  17. F. He, G. Song, X. He, C. Sui and M. Li, Structural and Phase Change Characteristics of Inorganic Microencapsulated Core/Shell Al-Si/Al2O3 Micro-Particles During Thermal Cycling, Ceram. Int., 2015, 41, p 10689–10696.

    Article  CAS  Google Scholar 

  18. B. Cárdenas and N. León, High Temperature latent Heat Thermal Energy Storage: Phase Change Materials, Design Considerations and Performance Enhancement Techniques, Renew. Sustain. Energy Rev., 2013, 27, p 724–737.

    Article  CAS  Google Scholar 

  19. L.F. Cabeza, H. Mehling, S. Hiebler and F. Ziegler, Heat Transfer Enhancement in Water When Used as PCM in Thermal Energy Storage, Appl. Therm. Eng., 2002, 22, p 1141–1151.

    Article  CAS  Google Scholar 

  20. T. Nomura, J. Yoolerd, N. Sheng, H. Sakai, Y. Hasegawa, M. Haga and T. Akiyama, Al/Al2O3 Core/Shell Microencapsulated Phase Change Material for High-Temperature Applications, Sol. Energy Mater. Sol. Cells., 2019, 193, p 281–286.

    Article  CAS  Google Scholar 

  21. Y. Zhao, H.B. Liu and Y.C. Zhao, Experimental Study on the Cycling Stability and Corrosive Property of Al-Si Alloys as Phase Change Materials in High-Temperature Heat Storage, Sol. Energy Mater. Sol. Cells., 2019, 203, p 110165–110181.

    Article  CAS  Google Scholar 

  22. C. Han, H. Gu, M. Zhang, A. Huang and Y. Chen, Preparation and Formation Mechanism of Al-Si/Al2O3 Core-Shell Structured Particles Fabricated Via Steam Corrosion, Ceram. Int., 2019, 45(11), p 13809–13817.

    Article  CAS  Google Scholar 

  23. F. Zhang, Y. Zhong, X. Yang, J. Lin and Z. Zhu, Encapsulation of Metal-Based Phase Change Materials Using Ceramic Shells Prepared by Spouted Bed CVD Method, Sol. Energy Mater. Sol. Cells., 2017, 170, p 137–142.

    Article  CAS  Google Scholar 

  24. Y. Pan, Role of Hydrogen on the Structural Stability, Mechanical and Thermodynamic Properties of the Cubic TM3Si Silicides, Int. J. Hydrog. Energ., 2021, 46, p 28338–28345.

    Article  CAS  Google Scholar 

  25. Y. Pan, The Influence of Ag and Cu on the Electronic and Optical Properties of ZrO From First-Principles Calculations, Mat. Sci. Semicon. Proc., 2021, 135, p 106084–106090.

    Article  CAS  Google Scholar 

  26. W.M. Jiang, J.W. Zhu, G.G. Li, F. Guan and Y. Yu, Enhanced Mechanical Properties of 6082 Aluminum Alloy via SiC Addition Combined with Squeeze Casting, J. Mater. Process. Technol., 2021, 288, p 116874.

    Article  Google Scholar 

  27. G.Y. Li, W.M. Jiang, F. Guan, J.W. Zhu, Z. Zhang and Z. Fan, Microstructure, Mechanical Properties and Corrosion Resistance of A356 Aluminum/AZ91D Magnesium Bimetal Prepared by a Compound Casting Combined with a Novel Ni-Cu Composite Interlayer, J. Mater. Sci. Technol., 2021, 88, p 119–131.

    Article  Google Scholar 

  28. Y. Pan and J. Zhang, Influence of Noble Metals on the Electronic and Optical Properties of the Monoclinic ZrO2: A First-Principles Study, Vacuum, 2021, 187, p 110112–110118.

    Article  CAS  Google Scholar 

  29. G. Zhang, J. Li, Y. Chen, H. Xiang, B. Ma and Z. Xu, Encapsulation of Copper-Based Phase Change Materials for High Temperature Thermal Energy Storage, Sol. Energy Mater. Sol. Cells., 2014, 128, p 131–137.

    Article  CAS  Google Scholar 

  30. T. Akiyama and J.I. Yagi, Encapsulation of Phase Change Materials for Storage of High Temperature Waste Heat, High Temp. Mater. Processes, 2000, 19, p 219–222.

    Article  CAS  Google Scholar 

  31. N. Maruoka and T. Akiyama, Thermal Stress Analysis of PCM Encapsulation for Heat Recovery of High Temperature Waste Heat, J. Chem. Eng. Jpn., 2003, 36, p 794–798.

    Article  CAS  Google Scholar 

  32. T. Nomura, C. Zhu, N. Sheng, G. Saito and T. Akiyama, Microencapsulation of Metalbased Phase Change Material for High-Temperature Thermal Energy Storage, Sci. Rep., 2015, 5, p 9117.

    Article  CAS  Google Scholar 

  33. R. Fukahori, T. Nomura and C. Zhu, Macro-encapsulation of Metallic Phase Change Material Using Cylindrical-Type Ceramic Containers for High-Temperature Thermal Energy Storage, Appl. Energy., 2016, 170(15), p 324–328.

    Article  CAS  Google Scholar 

  34. H. Sakai, N. Sheng and A. Kurniawan, Fabrication of Heat Storage Pellets Composed of Microencapsulated Phase Change Material for High-Temperature Applications, Appl. Energy., 2020, 265, p 114673–114681.

    Article  CAS  Google Scholar 

  35. H.H. Mert and M.S. Mert, Preparation and Characterization of Encapsulated Phase Change Materials in Presence of Gamma Alumina for Thermal Energy Storage Applications, Thermochim. Acta., 2019, 681, p 178382–178392.

    Article  CAS  Google Scholar 

  36. T.E. Alam, J.S. Dhau, D.Y. Goswami and E. Stefanakos, Microencapsulation and Characterization of Phase Change Materials for Latent Heat Thermal Energy Storage Systems, Appl. Energy., 2015, 154, p 92–101.

    Article  CAS  Google Scholar 

  37. Q. Zou, J. Jie, Z. Shen, N. Han and T. Li, A New Concept of Al-Si Alloy with Core-Shell Structure as Phase Change Materials for Thermal Energy Storage, Mater. Lett., 2019, 237, p 193–196.

    Article  CAS  Google Scholar 

  38. C. Han, H.Z. Gu, M.J. Zhang, A. Huang, Y. Zhang and Y. Wang, Al-Si@Al2O3@ Mullite Microcapsules for Thermal Energy Storage: Preparation and Thermal Properties, Sol. Energy Mater. Sol. Cells., 2020, 217, p 110697–110707.

    Article  CAS  Google Scholar 

  39. F. Hashimoto and M. Ohta, Interaction Between a Vacancy and an Si, Ge or Sn Atom in Al-10wt.%Zn Alloys, J. Phys. Soc. Jpn., 1964, 19(8), p 1331–1336.

    Article  CAS  Google Scholar 

  40. P. Kotze, T Wvon Backstr¨om, P J Erens, High Temperature Thermal Energy Storage Utilizing Metallic Phase Change Materials and Metallic Heat Transfer Fluids, J. Sol. Energy Eng., 2013, 135(3), p 35001–35006.

    Article  CAS  Google Scholar 

  41. Y. Jiang, M. Liu and Y. Sun, Review on the Development of High Temperature Phase Change Material Composites for Solar Thermal Energy Storage, Sol. Energy Mater. Sol. Cells., 2019, 203, p 110164–110175.

    Article  CAS  Google Scholar 

  42. T. Kawaguchi, H. Sakai, N. Sheng, A. Kurniawan and T. Nomura, Microencapsulation of Zn-Al Alloy as a New Phase Change Material for Middle-High-Temperature Thermal Energy Storage Applications, Appl. Energy., 2020, 276, p 115487–115496.

    Article  CAS  Google Scholar 

  43. Q.L. Li, X.D. Ma, X.Y. Zhang, J.B. Zhang and Y.F. Lan, Preparation of a New Capsule Phase Change Material for High Temperature Thermal Energy Storage, J. Alloys Compd., 2021, 14, p 159179–159187.

    Article  CAS  Google Scholar 

  44. S.V. Nistor, D. Ghica, M. Stefan and L.C. Nistor, Sequential Thermal Decomposition of the Shell of Cubic ZnS/Zn(OH)2 Core-Shell Quantum Dots Observed with Mn2+ Probing Ions, J. Phys. Chem. C., 2013, 117(42), p 22017–22028.

    Article  CAS  Google Scholar 

  45. I. Levin and D. Brandon, Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences, J. Am. Ceram. Soc., 1998, 81, p 1995–2012.

    Article  CAS  Google Scholar 

  46. E.O. Mokhnache, G. Wang, G. Lin, B. Kaveendran and L. Huang, Synthesis and Characterization of In Situ (Al2O3-Si)/Al Composites by Reaction Hot Pressing, Acta Metall. Sinica., 2014, 27(5), p 930–936.

    Article  CAS  Google Scholar 

  47. R. Schoen and C.E. Roberson, Structures of Aluminum Hydroxide and Geochemical Implication, Am. Mineral., 1970, 55, p 43–77.

    CAS  Google Scholar 

  48. O.V. Al’myasheva, E.N. Korytkova, A.V. Maslov and V.V. Gusarov, Preparation of Nanocrystalline Alumina Under Hydrothermal Conditions, Inorg. Mater., 2005, 41(5), p 460–467.

    Article  CAS  Google Scholar 

  49. N. Sheng, C. Zhu, H. Sakai, T. Akiyama and T. Nomura, Synthesis of Al-25 wt% Si@Al2O3@Cu Microcapsules as Phase Change Materials for High Temperature Thermal Energy Storage, Sol. Energy Mater. Sol. Cells., 2019, 191, p 141–147.

    Article  CAS  Google Scholar 

  50. N. Sheng, C. Zhu, G. Saito, T. Hiraki, M. Haka, Y. Hasegawa, H. Sakai, T. Akiyamaa and T. Nomura, Development of a Microencapsulated Al-SI phase Change Material with High-Temperature Thermal Stability And Durability Over 3000 Cycles, J. Mater. Chem. A, 2018, 6, p 18143–18153.

    Article  CAS  Google Scholar 

  51. K. Tadanaga, N. Katata and T. Minami, Formation Process of Super-Water-Repellent Al2O3 Coating Films with High Transparency by the Sol-Gel Method, J. Am. Ceram. Soc., 1997, 80, p 3213–3225.

    Article  CAS  Google Scholar 

  52. G.H. Xu, G.F. Wang and K.F. Zhang, Effect of Rare Earth Y on Oxidation Behavior of NiAl-Al2O3, Trans. Nonferrous Met. Soc. China., 2011, 21, p 362–368.

    Article  Google Scholar 

  53. K. Prasanna, A.S. Khanna, R. Chandra and W.J. Quadakkers, Effect of θ-alumina Formation on the Growth Kinetics of Alumina-Forming Superalloys, Oxid. Met., 1996, 46, p 465–480.

    Article  CAS  Google Scholar 

  54. K. Dovidenko, S. Oktyabrsky, A.K. Sharma and J. Narayan, TEM Characterization of ZnO and AIN/ZnO Thin Films Grown on Sapphire, MRS Online Proceeding Library Archive, 1998, 526, p 311–316.

    Article  CAS  Google Scholar 

  55. Y. Ohno, T. Taishi and I. Yonenaga, In Situ Analysis of Optoelectronic Properties of Dislocations in ZnO in TEM Observations, Phys. Status Solidi., 2009, 206(8), p 1904–1911.

    Article  CAS  Google Scholar 

  56. Q. Jiao, B. Zhang, S. Yan, Y. Ou, T. Yan and F. Du, Oxidation and Ignition of a Heterogeneous Al-Zn Alloy Powder Metallic Fuel, Mater. Lett. 2020, 267, p 127502–127506.

    Article  CAS  Google Scholar 

  57. T. Nomura, N. Sheng, C. Zhu, G. Saito, D. Hanzak, T. Hiraki and T. Akiyama, Microencapsulated Phase Change Materials with High Heat Capacity and High Cyclic Durability for High-Temperature Thermal Energy Storage and Transportation, Appl. Energy., 2017, 188, p 9–18.

    Article  CAS  Google Scholar 

  58. C. Han, H. Gu and M. Zhang, Thermal Properties of Al–Si/Al2O3 Core–Shell Particles Prepared by Using Steam Hydration Method, J. Alloys Compd., 2019, 817, p 152801–152810.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the National Natural Science Foundation of China (Grant No. 52061026; No. 51561021), the State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology (SKLAB02019007), the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201901311), Key Research and Development Program of Gansu Province (21YF5GA075) and Outstanding Graduate Student "Innovation Star" Project of Gansu (2021CXZX-429).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinglin Li, Xiaoyu Zhang or Jiqiang Ma.

Ethics declarations

Declaration of Interest Statement

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Ma, X., Zhang, X. et al. Al-10 wt.%Zn/Al2O3@ZnO Microcapsules for High-Temperature Thermal Storage: Preparation and Thermal Properties. J. of Materi Eng and Perform 31, 2723–2731 (2022). https://doi.org/10.1007/s11665-021-06388-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06388-7

Keywords

Navigation