Skip to main content
Log in

Evaluation of the Ferromagnetic Cold-Sprayed Coating Peeling Process at the Interface Based on Magnetic Barkhausen Noise Testing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

As a type of novel surface engineering technology, the application of cold spraying in the manufacturing and remanufacturing of high-end precision parts is very suitable. However, the disadvantage of low interface bonding strength can easily induce coating peeling at the coating/substrate interface under the effect of applied loads. Therefore, finding a suitable nondestructive testing method is significant to evaluate the cold-sprayed coating peeling process and provide prediction results. To achieve this aim, magnetic Barkhausen noise (MBN) testing was used in this paper because of its high sensitivity to microstructure variation. The Ni-Zn-Al2O3 ferromagnetic coating deposited on the ductile cast iron substrate was prepared by cold spraying. Based on the wavelet coherence analysis, the frequency of MBN signals induced by magnetic domain movement was mainly concentrated in the range of 1–4 kHz. The spectrum power between 1 kHz and 4 kHz was extracted as the characteristic value, and the linear fitting relationship between the characteristic value and applied load was established. When the power reaches the threshold value range of 3.106×10−8–3.557×10−8 W, the probability that the interfacial stress exceeds the coating/substrate bonding strength and that Ni-Zn-Al2O3 coating peeling occurs is 95%. Combined with the microstructure and morphology analysis, the mechanism of cold-sprayed coating peeling was revealed, and the underlying reason for MBN signal variation was explained. This research can accurately evaluate the ferromagnetic cold-sprayed coating peeling process and the interface bonding strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Reference

  1. X.L. Zhou, J.S. Zhang and X.K. Wu, Advanced Cold Spraying Technology and Application [M], China Machine Press, Beijing, 2011.

    Google Scholar 

  2. J.H. Yao, L.J. Wu, B. Li et al., Research States and Development Tendency of Supersonic Laser Deposition Technology, Chin. J. Lasers, 2019, 46(3), p 0300001.

    Article  Google Scholar 

  3. W.Y. Li, K. Yang, S. Yin et al., Solid-state Additive Manufacturing and Repairing by Cold Spraying: A Review [J], J. Mater. Sci. Technol., 2018, 34(3), p 440–457.

    Article  CAS  Google Scholar 

  4. H. Assadi, H. Kreye, F. Gartner et al., Cold Spraying – A Materials Perspective [J], Acta Mater., 2016, 116, p 382–407.

    Article  CAS  Google Scholar 

  5. X.F. Sun, Z.H. Chen, Z.M. Li et al., Cold Sprayed Cu420F Coating for Large Marine Propeller Remanufacturing [J], China Surf. Eng., 2017, 30(3), p 159–166.

    Google Scholar 

  6. M. Yandouzi, S. Gaydos, D. Guo et al., Aircraft Skin Restoration and Evaluation [J], J. Therm. Spray Technol., 2014, 23(8), p 1281–1290.

    Article  CAS  Google Scholar 

  7. R.N. Raoelison, Y. Xie, T. Sapanathan et al., Cold Gas Dynamic Spray Technology: A Comprehensive Review of Processing Conditions for Various Technological Developments Till to Date [J], Addit. Manuf., 2018, 19, p 134–159.

    Google Scholar 

  8. P. Cavaliere, Cold-Spray Coatings: Recent Trends and Future Perspectives [M], Springer International Publishing AG, Berlin, 2018.

    Book  Google Scholar 

  9. B.S. Xu, S.Y. Dong and P.J. Shi, States and Prospects of China Characterised Quality Guarantee Technology System for Remanufactured Parts [J], J. Mech. Eng., 2013, 49(20), p 84–90.

    Article  Google Scholar 

  10. R.G. Maev, V. Leshchynsky, E. Strumban et al., Structure and Mechanical Properties of Thick Copper Coating Made by Cold Spray [J], J. Therm. Spray Technol., 2016, 25(1–2), p 113–122.

    Article  CAS  Google Scholar 

  11. Y.L. Zhang, H.C. Zhang, J.X. Zhao et al., Review of Non-destructive Testing for Remanufacturing of High-end Equipment [J], J. Mech. Eng., 2013, 49(7), p 80–90.

    Article  Google Scholar 

  12. B. Liu and S.Y. Dong, Stress Evaluation of Laser Cladding Coating with Critically Refracted Longitudinal Wave Based on Cross Correlation Function [J], Appl. Acoust., 2016, 101, p 98–103.

    Article  Google Scholar 

  13. R.G. Maev, Materials Characterization Using Nondestructive Evaluation (NDE) Methods-Acoustic Microscopy for Materials Characterization [M], Woodhead Publishing, USA, 2016, p 161–175

    Google Scholar 

  14. D.H. Wu, Z.T. Liu, X.H. Wang et al., Composite Magnetic Flux Leakage Detection Method for Pipelines Using Alternating Magnetic Field Excitation [J], NDT&E Int., 2017, 91, p 148–155.

    Article  Google Scholar 

  15. G.T. Shen, Y. Zheng, Z.P. Jiang et al., The Development Status of Magnetic Barkhausen Noise Technique [J], Nondestruct. Test., 2016, 38(7), p 66–74.

    Google Scholar 

  16. S. White, T. Krause and L. Clapham, Control of Flux in Magnetic Circuits for Barkhausen Noise Measurements [J], Meas. Sci. Technol., 2007, 18, p 3501–3510.

    Article  CAS  Google Scholar 

  17. S.A. Suvi, V. Minnamari, S. Aki et al., Utilization of Barkhausen Noise Magnetizing Sweeps for Case-Depth Detection From Hardened Steel [J], NDT&E Int, 2012, 52, p 95–102.

    Article  CAS  Google Scholar 

  18. B. Gupta, B. Ducharne, T. Uchimoto et al., Non-destructive Testing on Creep Degraded 12% Cr-Mo-W-V Ferritic Test Samples Using Barkhausen Noise [J], J. Magn. Magn. Mater., 2020, 498, p 166102.

    Article  CAS  Google Scholar 

  19. A. Srivastava, A. Awale, M. Vashista et al., Characterization of Ground Steel using Nondestructive Magnetic Barkhausen Noise Technique [J], J. Mater. Eng. Perform., 2020, 29, p 4617–4625.

    Article  CAS  Google Scholar 

  20. S. Kahrobaee and M. Kashefi, Assessment of Retained Austenite in AISI D2 Tool Steel Using Magnetic Hysteresis and Barkhausen Noise Parameters [J], J. Mater. Eng. Perform., 2015, 24, p 1192–1198.

    Article  CAS  Google Scholar 

  21. J.N. Mohapatra, I. Chakradhar, K.R.C. Rao et al., Non-destructive Magnetic Evaluation of Laser Weld Quality in Hot Rolled Coils [J], J. Mater. Eng. Perform., 2015, 24, p 2319–2326.

    Article  CAS  Google Scholar 

  22. Y. Deng, Z. Li, J. Chen et al., The Effects Of Structure Characteristics on Magnetic Barkhausen Noise in Commercial Steels [J], J. Magn. Magn. Mater., 2018, 451, p 276–282.

    Article  CAS  Google Scholar 

  23. S. Send, D. Dapprich, J. Thomas et al., Non-destructive Case Depth Determination by Means of Low-Frequency Barkhausen Noise Measurements [J], J. Nondestr. Eval., 2018, 37, p 82–92.

    Article  Google Scholar 

  24. A. Drehmer, G.J.L. Gerhardt and F.P. Missell, Case depth in SAE 1020 steel using Barkhausen noise [J], Mater. Res., 2013, 16(5), p 1015–1019.

    Article  CAS  Google Scholar 

  25. N. Seemuang and T. Slatter, Using Barkhausen Noise to Measure Coating Depth of Coated High-speed Steel [J], Int. J. Adv. Manuf. Technol., 2017, 92(1–4), p 247–258.

    Article  Google Scholar 

  26. M. Vashista and V. Moorthy, On the Shape of the Magnetic Barkhausen Noise Profile for Better Revelation of the Effect of Microstructures on the Magnetisation Process in Ferritic Steels [J], J. Magn. Magn. Mater., 2015, 393, p 584–592.

    Article  CAS  Google Scholar 

  27. Y. Bai, Z.H. Wang, X.B. Li et al., Corrosion Behavior of Low Pressure Cold Sprayed Zn-Ni Composite [J], J. Alloys Compd., 2017, 719, p 194–202.

    Article  CAS  Google Scholar 

  28. Y. Bai, Z.H. Wang, X.B. Li et al., Microstructure and Mechanical Properties of Zn-Ni-Al2O3 Composite Coatings [J], Materials, 2018, 11, p 853.

    Article  CAS  Google Scholar 

  29. K. Kilicay, Development of Protective MMC Coating on TZM Alloy for High Temperature Oxidation Resistance by LPCS [J], Surf. Coat. Technol., 2020, 393, p 125777.

    Article  CAS  Google Scholar 

  30. X.G. Meng, X.Y. Li and L. Sun, Influence of Cold Spraying Process on the Bonding Strength of Ni-Al2O3-Zn Coating [J], Mater. Sci. Forum, 2018, 932, p 91–96.

    Article  Google Scholar 

  31. X.Y. Zhang, Z.C. Shi, M.Q. Guo et al., The Effect of Pre-treatment and Post-treatment on Properties of Cold Spray Zn-Ni Composite Coating [J], Therm. Spray Technol., 2014, 6(2), p 6–13.

    Google Scholar 

  32. S.L. Huang and S. Wang, New Technologies in Electromagnetic Non-Destructive Testing [M], Springer Series in Measurement Science and Technology, Berlin, 2016.

    Book  Google Scholar 

  33. D.C. Jiles, Dynamics of Domain Magnetization and the Barkhausen Effect [J], Czech J. Phys., 2000, 50, p 893–924.

    Article  Google Scholar 

  34. G.C. Jain, B.K. Das, R.B. Tripathi et al., Influence of V2O5 Addition on Electrical Conductivity and Magnetic Properties of Ni-Zn Ferrites [J], IEEE Trans. Magn., 1982, 18(2), p 776–778.

    Article  Google Scholar 

  35. A. Verma and R. Chatterjee, Effect of Zinc Concentration on the Structural, Electrical and Magnetic Properties of Mixed Mn-Zn and Ni-Zn Ferrites Synthesized by the Citrate Precursor Technique [J], J. Magn. Magn. Mater., 2006, 306, p 313–320.

    Article  CAS  Google Scholar 

  36. B.R. Badu, K.V. Ramesh, M.S. Prasad et al., Study of Microstructure and Augmentation of DC Electrical Resistivity Due to Al3+ Substitution in Ni-Zn Nano Ferrite System Synthesized Via Auto Combustion [J], Mod. Phys. Lett. B, 2015, 29(26), p 1550151.

    Article  CAS  Google Scholar 

  37. H.H. Huang, S.L. Jiang, R.J. Liu et al., Investigation of Magnetic Memory Signals Induced by Dynamic Bending Load in Fatigue Crack Propagation Process of Structural Steel [J], J. Nondestr. Eval., 2014, 33, p 407–412.

    Article  Google Scholar 

  38. F.S. Qiu, W.W. Ren, G.Y. Tian et al., Characterization of Applied Tensile Stress Using Domain Wall Dynamic Behavior of Grain-Oriented Electrical Steel [J], J. Magn. Magn. Mater., 2017, 432, p 250–259.

    Article  CAS  Google Scholar 

  39. H.H. Huang and Z.C. Qian, Recent Advances in Magnetic Non-destructive Testing and the Application of this Technique to Remanufacturing [J], Insight Non-Destruct. Test Cond. Monit., 2018, 60, p 451–462.

    Article  CAS  Google Scholar 

  40. A.K. Panda, J.N. Mohapatra, P. Murugaiyan et al., Impact of Pre-formed Martensite on the Electromagnetic Properties and Martensitic Transformation Kinetics of Uniaxially Tensile Loaded 304 Stainless Steel [J], J. Mater. Eng. Perform., 2020, 29, p 7141–7152.

    Article  CAS  Google Scholar 

  41. H.H. Huang, G. Han, Z.C. Qian et al., Charactering the Magnetic Memory Signals on the Surface of Plasma Transferred Arc Cladding Coating Under Fatigue Loads [J], J. Magn. Magn. Mater., 2017, 443, p 281–286.

    Article  CAS  Google Scholar 

  42. P. Wang, L. Zhu, Q.J. Zhu et al., An Application of Back Propagation Neural Network for the Steel Stress Detection Based on Barkhausen Noise Theory [J], NDT&E Int., 2013, 55, p 9–14.

    Article  CAS  Google Scholar 

  43. A. Grinsted, J.C. Moore and S. Jevrejeva, Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series [J], Nonlin. Process. Geophys., 2004, 11, p 561–566.

    Article  Google Scholar 

  44. C. Torrence and G.P. Compo, A Practical Guide to Wavelet Analysis [J], Bull. Am. Meteor. Soc., 1998, 79, p 61–78.

    Article  Google Scholar 

  45. X. Cui, D.M. Bryant and A.L. Reiss, NIRS-based Hyperscanning Reveals Increased Interpersonal Coherence in Superior Frontal Cortex During Cooperation [J], Neuroimage, 2012, 59(3), p 2430–2437.

    Article  Google Scholar 

  46. C. Torrence and P.J. Webster, Interdecadal Changes in the ENSO-monsoon System [J], J. Clim., 1999, 12(8), p 2679–2690.

    Article  Google Scholar 

  47. Y.J. Li, S.Y. Dong, S.X. Yan et al., Surface Remanufacturing of Ductile Cast Iron by Laser Cladding Ni-Cu Alloy Coatings [J], Surf. Coat. Technol., 2018, 347, p 20–28.

    Article  CAS  Google Scholar 

  48. Y.C. Xie, C.Y. Chen, M.P. Planche et al., Strengthened Peening Effect on Metallurgical Bonding Formation in Cold Spray Additive Manufacturing [J], J. Therm. Spray Technol., 2019, 28, p 769–779.

    Article  CAS  Google Scholar 

  49. K. Petrackova, J. Kondas and M. Guagliano, Mechanical Performance of Cold-sprayed A357 Aluminum Alloy Coatings for Repair and Additive Manufacturing [J], J. Therm. Spray Technol., 2017, 26, p 1888–1897.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (52005246, 51722502, and 51675155), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB460012), the Scientific Research Fund for High-level Talents in Nanjing Institute of Technology (YKJ201948), and the 16th “six talents peaks” project of Jiangsu Province (GDZB-017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengchun Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Z., Huang, H., Ge, Y. et al. Evaluation of the Ferromagnetic Cold-Sprayed Coating Peeling Process at the Interface Based on Magnetic Barkhausen Noise Testing. J. of Materi Eng and Perform 31, 1757–1768 (2022). https://doi.org/10.1007/s11665-021-06307-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06307-w

Keywords

Navigation