Skip to main content
Log in

Stress Corrosion Cracking Susceptibility of Additively Manufactured Aluminum Alloy 7050 Produced by Selective Laser Melting in Chloride Environments

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Additively manufactured, high-strength aluminum alloy 7050 (Al-Zn-Mg-Cu) produced by selective laser melting (SLM) was evaluated for stress corrosion cracking (SCC) susceptibility in chloride-containing environments relative to 7050-T7451 wrought plate. Constant extension rate tests and constant strain tests were conducted in 3.5% sodium chloride (NaCl) solutions. Test coupons were characterized for evidence of SCC following the test. The effects of chloride concentration and the presence of an oxidizer, i.e., hydrogen peroxide, on SCC and corrosion susceptibility were also studied. Results of the experiments implied that the 7xxx-series SLM alloy generally showed similar susceptibility to the 7050-T7451 plate with limited SCC initiation in the chloride environments. The presence of hydrogen peroxide changed the corrosion mode to intergranular corrosion and pitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D.K. Xu, N. Birbilis and P.A. Rometsch, Effect of S-Phase Dissolution on the Corrosion and Stress Corrosion cracking of an as-Rolled Al−Zn−Mg−Cu alloy, Corrosion, 2012, 68(3), p 035001.

    Google Scholar 

  2. B. Sarkar, M. Marek and E. Starke, The Effect of Copper Content and Heat Treatment on the Stress Corrosion Characteristics of Al−6Zn−2Mg−XCu Alloys, Metall. Mater. Trans. A, 1981, 12, p 1939–1943.

    Article  CAS  Google Scholar 

  3. S. Wang, B. Luo, Z. Bai, C. He, S. Tan and G. Jiang, Effect of Zn/Mg Ratios on Microstructure and Stress Corrosion Cracking of 7005 Alloy, Materials, 2019, 12(2), p 285.

    Article  CAS  Google Scholar 

  4. J. Martin, B. Yahata, J. Hundley, J. Mayer, T. Schaedler and T. Pollock, 3D Printing of High-Strength Aluminium Alloys, Nature, 2017, 549, p 365–369.

    Article  CAS  Google Scholar 

  5. N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck and R. Hague, 3D Printing of Aluminium Alloys: Additive Manufacturing of Aluminium Alloys using Selective Laser Melting, Progress Mater. Sci., 2019, 106, p 100578.

    Article  CAS  Google Scholar 

  6. M.L. Montero-Sistiaga, R. Mertens, B. Vrancken, X. Wang, B.V. Hooreweder, J. Kruth and J.V. Humbeeck, Changing the Alloy Composition of Al7075 for Better Process Ability by Selective Laser Melting, J. Mater. Process. Technol., 2016, 238, p 437–445.

    Article  CAS  Google Scholar 

  7. S. Sun, P. Liu, J. Hu, C. Hong, X. Qiao, S. Liu, R. Zhang and C. Wu, Effect of Solid Solution Plus Double Aging on Microstructural Characterization of 7075 Al Alloys Fabricated by Selective Laser Melting (SLM), Opt. Laser Technol., 2019, 114, p 158–163.

    Article  CAS  Google Scholar 

  8. P. Wang, H.C. Li, K.G. Prashanth, J. Eckert and S. Scudino, Selective Laser Melting of Al-Zn-Mg-Cu: Heat Treatment, Microstructure and Mechanical Properties, J. Alloy. Compd., 2017, 707, p 287–290.

    Article  CAS  Google Scholar 

  9. P. Liu, J. Hu, H. Li, S. Sun and Y. Zhang, Effect of Heat Treatment on Microstructure, Hardness and Corrosion Resistance of 7075 Al Alloys Fabricated by SLM, J. Manuf. Process., 2020, 60, p 578–585.

    Article  Google Scholar 

  10. O. Gharbi, S.K. Kairy, P.R. De Lima, D. Jiang, J. Nicklaus and N. Birbilis, Microstructure and Corrosion Evolution of Additively Manufactured Aluminium Alloy AA7075 as a Function of Ageing, npj Mater. Degrad., 2019, 3, p 40.

    Article  Google Scholar 

  11. J.S. Nuechterlein and J.J. Iten, Reactive Additive Manufacturing, U. S. Patent, 2019, 10(507), p 638.

    Google Scholar 

  12. K.R. Ramkumar, S. Sivasankaran, F.A. Al-Mufadi, S. Siddharth and R. Raghu, Investigations on Microstructure, Mechanical, and Tribological Behavior off AA 7075–x wt.% TiC Composites for Aerospace Applications, Arch. Civ. Mech. Eng., 2019, 19(2), p 428–438.

    Article  Google Scholar 

  13. M. Skibo, Alumina Particulate Reinforced 7000 Series Composites, SAE Technical Paper, 1993, p 930181.

  14. Y. Shimizu, T. Nishimura and I. Matsushima, Corrosion Resistance of Al-Based Metal Matrix Composites, Mater. Sci. Eng. A, 1995, 198, p 113–118.

    Article  Google Scholar 

  15. J. Wang, J. Geng, Y. Li, L. Cai, M. Wang, D. Chen, N. Ma and H. Wang, Stress Corrosion Cracking Behavior of In-situ TiB2/7050 Composite, Materials Research Express, 2018, 5, p 126501.

    Article  Google Scholar 

  16. G. Sander, J. Tan, P. Balan, O. Gharbi, D.R. Feenstra, L. Singer, S. Thomas, R.G. Kelly, J.R. Scully and N. Birbilis, Corrosion of Additively Manufactured Alloys: A Review, Corrosion, 2018, 74, p 1318–1350.

    Article  CAS  Google Scholar 

  17. S. Gorsse, C. Hutchinson, M. Gouné and R. Banerjee, Additive Manufacturing of Metals: A Brief Review of the Characteristic Microstructures and Properties of Steels, Ti-6Al-4V and High-Entropy Alloys, Sci. Technol. Adv. Mater., 2017, 18(1), p 584–610.

    Article  CAS  Google Scholar 

  18. E. Liverani, S. Toschi, L. Ceschini and A. Fortunato, Effect of Selective Laser Melting (SLM) Process Parameters on Microstructure and Mechanical Properties of 316L Austenitic stainless Steel, J. Mater. Processing Technology, 2017, 249, p 255–263.

    Article  CAS  Google Scholar 

  19. Z. Sun, X. Tan, S.B. Tor and W.Y. Yeong, Selective Laser Melting of Stainless Steel 316L with Low Porosity and High Build Rates, Mater. Des., 2016, 104, p 197–204.

    Article  CAS  Google Scholar 

  20. A. Leon, A. Shirizly and E. Aghion, Corrosion Behavior of AlSi10Mg Alloy Produced by Additive Manufacturing (AM) vs. Its Counterpart Gravity Cast Alloy, Metals, 2016, 6(7), p 148.

    Article  Google Scholar 

  21. A. Leon and E. Aghion, Effect of Surface Roughness on corrosion Fatigue performance of AlSi10Mg Alloy Produced by Selective LASER Melting (SLM), Mater. Charact., 2017, 131, p 188–194.

    Article  CAS  Google Scholar 

  22. P. Fathi, M. Mohammadi, X. Duan and A.M. Nasiri, A comparative study on corrosion and microstructure of direct metal laser sintered AlSi10Mg_200C and die cast A360.1 aluminum, J. Mater. Process. Technol., 2018, 259, p 1–14.

    Article  CAS  Google Scholar 

  23. M. Cabrini, S. Lorenzi, T. Pastore, S. Pellegrini, E.P. Ambrosio, F. Calignano, D. Manfredi, M. Pavese and P. Fino, Effect of Heat Treatment on Corrosion Resistance of DMLS AlSi10Mg Alloy, Electrochim. Acta, 2016, 206, p 346–355.

    Article  CAS  Google Scholar 

  24. M. Cabrini, S. Lorenzi, T. Pastore, S. Pellegrini, D. Manfredi, P. Fino, S. Biamino and C. Badini, Evaluation of Corrosion Resistance of Al–10Si–Mg Alloy Obtained by Means of Direct Metal Laser Sintering, J. Mater. Process. Technol., 2016, 231, p 326–335.

    Article  CAS  Google Scholar 

  25. D.K. Xu, N. Birbilis and P.A. Rometsch, The Effect of Pre-Aging Temperature and Retrogression Heating Rate on the Strength and Corrosion Behavior of AA7150, Corros. Sci., 2012, 54, p 17–25.

    Article  CAS  Google Scholar 

  26. F.X. Song, X.M. Zhang, S.D. Liu et al., The Effect of Quench Rate and Overaging Temper on the Corrosion Behavior of AA7050, Corros. Sci., 2014, 78, p 276–286.

    Article  CAS  Google Scholar 

  27. C.Y. Meng, D. Zhang, L.Z. Zhuang and J.S. Zhang, Correlations Between Stress Corrosion Cracking, Grain Boundary Precipitates and Zn Content of Al-Mg-Zn Alloys, J. Alloy Compd., 2016, 655, p 178–187.

    Article  CAS  Google Scholar 

  28. N.J. Henry Holroyd and G.M. Scamans, Stress Corrosion Cracking in Al-Zn-Mg-Cu Aluminum Alloys in Saline Environments, Metall. Mater. Trans. A, 2013, 44A, p 1230–1253.

    Article  Google Scholar 

  29. A.C.U. Rao, V. Vasu, M. Govindaraju and K.V. Sai Srinadh, Stress Corrosion Cracking Behaviour of 7xxx Aluminum Alloys: A Literature Review, Trans. Nonferrous Met. Soc. China, 2016, 26(6), p 1447–1471.

    Article  CAS  Google Scholar 

  30. C.Y. Meng, D. Zhang, L.Z. Zhuang and J.S. Zhang, Correlations Between Stress Corrosion Cracking, Grain Boundary Precipitates and Zn CONTENT of Al–Mg–Zn alloys, J. Alloy Comp., 2016, 655, p 178–187.

    Article  CAS  Google Scholar 

  31. M. Yu, H. Zu, K. Zhao, J. Liu and S. Li, Effects of Dry/Wet Ratio and Pre-Immersion on Stress Corrosion Cracking of 7050–T7451 Aluminum Alloy under Wet-dry Cyclic Conditions, Chin. J. Aeronaut., 2018, 31, p 2176–2184.

    Article  Google Scholar 

  32. “Guidelines for the Selection of Metallic Materials for Stress Corrosion Cracking Resistance in Chloride Environments,” MSFC-STD-3029, National Aeronautics and Space Administration (NASA) George C. Marshall Space Flight Center (MSFC), 2005, p 31.

  33. R. Braun, Environmentally Assisted Cracking of Alloy 7050–t7451 Exposed to Aqueous Chloride Solutions, Met. Mater. Trans. A, 2016, 47A, p 1367–1377.

    Article  Google Scholar 

  34. D. Najjar, T. Magnin and T.J. Warner, Influence of Critical Surface Defects and Localized Competition Between Anodic Dissolution and Hydrogen Effects during Stress Corrosion cracking of a 7050 Aluminium Alloy, Mater. Sci. Eng. A, 1997, 238, p 293–302.

    Article  Google Scholar 

  35. K.D. Ralston and N. Birbilis, Effect of Grain Size on Corrosion: A Review, Corrosion, 2010, 66, p 1–13.

    Article  Google Scholar 

  36. T.C. Tsai and T.H. Chuang, Role of Grain Size on the Stress Corrosion Cracking of 7475 Aluminum Alloys, Mater. Sci. Eng. A, 1997, 225, p 135–144.

    Article  Google Scholar 

  37. Z. Fan, X. Yan, Z. Fu, B. Niu, J. Chen, Y. Hu, C. Chan and J. Yi, In situ Formation of D022-Al3Ti during Selective Laser Melting of Nano-TiC/AlSi10Mg Alloy Prepared by Electrostatic Self-Assembly, Vacuum, 2021, 188, p 110179.

    Article  CAS  Google Scholar 

  38. H. Torbati-Sarraf, S.A. Torbati-Sarraf, N. Chawala and A. Poursaee, A Comparative Study of Corrosion Behavior of an Additively Manufactured Al-6061 RAM2 with Extruded Al-6061 T6, Corros. Sci., 2021, 174, p 108838.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by Northrop Grumman Independent Research and Development (IRAD) funding. We are thankful to Mr. Jamshad Mahmood for his help with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin R. Chasse.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Additive Manufacturing. The issue was organized by Dr. William Frazier, Pilgrim Consulting, LLC; Mr. Rick Russell, NASA; Dr. Yan Lu, NIST; Dr. Brandon D. Ribic, America Makes; and Caroline Vail, NSWC Carderock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chasse, K.R., Rajendran, R., Owens, C.T. et al. Stress Corrosion Cracking Susceptibility of Additively Manufactured Aluminum Alloy 7050 Produced by Selective Laser Melting in Chloride Environments. J. of Materi Eng and Perform 30, 7046–7056 (2021). https://doi.org/10.1007/s11665-021-06135-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06135-y

Keywords

Navigation