Skip to main content
Log in

Effects of Heat Treatment and Severe Plastic Deformation on Microstructure, Mechanical Properties and Midsection Ultimate Strength of Shipbuilding Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

This article has been updated

Abstract

Improving the strength values of low–medium-strength shipbuilding steels without changing the chemical properties will be very useful to meet the high-strength requirement in ships. Heat treatments and severe plastic deformation methods are the main methods used to increase the strength values of steel without changing the chemical structure. Considering the high improvement effect in strength values, quenching process and equal channel angular pressing (ECAP) method stand out among heat treatments and severe plastic deformation methods, respectively. In the current study, quenching and ECAP were applied to low–medium-strength shipbuilding steel and the changes in microstructure and mechanical properties of steel after these methods were comparatively investigated. While martensite was formed in the microstructure after quenching, the average grain size decreased compared to the base material without a phase change with ECAP. Hardness values increased by 100% after quenching and increased by 80% after ECAP. Yield and tensile strength values increased by 3.3 and 2.5 times, respectively, after quenching. On the other hand, yield and tensile strength values after ECAP raised less than after quenching and increased 1.5 and 1.7 times, respectively, compared to the base material. Impact toughness values decreased by 80% after quenching and 10% after ECAP compared to the base material. Also, corrosion resistance of the base material decreased by 13% after quenching and increased by 10% after ECAP. Changes in the mechanical properties of the material after these processes were reflected the middle section of a ship using finite element-based programs and approximately 3.3 times higher than that of the base material for all dimension load–ultimate strength values under uniaxial compression were reached in the model reflecting the mechanical properties of the quenched samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Change history

  • 17 October 2021

    The volume number given for this article at the head of its title page has been corrected from a previous version.

References

  1. A. Ozekcin, H.W. Jin, J.Y. Koo, N.V. Bangaru, R. Ayer, G. Vaughn, R. Steel and S. Packer, A Microstructural Study of Friction Stir Welded Joints of Carbon Steels. Int. J. Offshore Polar Eng. 2004, 14(4), p 284–288.

    CAS  Google Scholar 

  2. D.M. Sekban, S.M. Aktarer, P. Xue, Z.Y. Ma and G. Purcek, Impact Toughness of Friction Stir Processed Low Carbon Steel Used in Shipbuilding, Mater. Sci. Eng. A, 2016, 672, p 40–48.

    Article  CAS  Google Scholar 

  3. P. Xue, B.L. Xiao, W.G. Wang, Q. Zhang, D. Wang, Q.Z. Wang and Z.Y. Ma, Achieving Ultrafine Dual-Phase Structure with Superior Mechanical Property in Friction Stir Processed Plain Low Carbon Steel, Mater. Sci. Eng. A, 2013, 575(Supplement C), p 30–34.

    Article  CAS  Google Scholar 

  4. R. Song, D. Ponge, D. Raabe, J.G. Speer and D.K. Matlock, Overview of Processing, Microstructure and Mechanical Properties of Ultrafine Grained bcc Steels, Mater. Sci. Eng. A, 2006, 441(1), p 1–17.

    Article  CAS  Google Scholar 

  5. V.M. Segal, Materials Processing by Simple Shear, Mater. Sci. Eng. A, 1995, 197(2), p 157–164.

    Article  Google Scholar 

  6. S.-Y. Chen, K.-H. Chen, G.-S. Peng, X. Liang and X.-H. Chen, Effect of Quenching Rate on Microstructure and Stress Corrosion Cracking of 7085 Aluminum Alloy, Trans. Nonferr. Metals Soc. China, 2012, 22(1), p 47–52.

    Article  CAS  Google Scholar 

  7. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock and J.G. Speer, Quenching and Partitioning Martensite—A Novel Steel Heat Treatment, Mater. Sci. Eng. A, 2006, 438–440, p 25–34.

    Article  CAS  Google Scholar 

  8. M. Elhefnawey, G.L. Shuai, Z. Li, M. Nemat-Alla, D.T. Zhang and L. Li, On Achieving Superior Strength for Al–Mg–Zn Alloy Adopting Cold ECAP, Vacuum, 2020, 174, p 109191.

    Article  CAS  Google Scholar 

  9. Y. Fukuda, K. Oh-ishi, Z. Horita and T.G. Langdon, Processing of a Low-Carbon Steel by Equal-Channel Angular Pressing, Acta Mater., 2002, 50(6), p 1359–1368.

    Article  CAS  Google Scholar 

  10. Ö. Güler, N. Bağcı, S.H. Güler, C.A. Canbay, H. Safa, T.A. Yılmaz and M. Taşkın, The Effect of Equal-Channel Angular Pressing (ECAP) on the Properties of Graphene Reinforced Aluminium Matrix Composites, J. Compos. Mater., 2020, 55, p 1749–1768.

    Article  CAS  Google Scholar 

  11. F. Hayat and H. Uzun, Effect of Heat Treatment on Microstructure, Mechanical Properties and Fracture Behaviour of Ship and Dual Phase Steels, J. Iron. Steel Res. Int., 2011, 18(8), p 65–72.

    Article  CAS  Google Scholar 

  12. C.X. Huang, G. Yang, Y.L. Gao, S.D. Wu and Z.F. Zhang, Influence of Processing Temperature on the Microstructures and Tensile Properties of 304L Stainless Steel by ECAP, Mater. Sci. Eng. A, 2008, 485(1), p 643–650.

    Article  CAS  Google Scholar 

  13. G.C. Hwang, S. Lee, J.Y. Yoo and W.Y. Choo, Effect of Direct Quenching on Microstructure and Mechanical Properties of Copper-Bearing High-Strength Alloy Steels, Mater. Sci. Eng. A, 1998, 252(2), p 256–268.

    Article  Google Scholar 

  14. H.Y. Li, X.W. Lu, W.J. Li and X.J. Jin, Microstructure and Mechanical Properties of an Ultrahigh-Strength 40SiMnNiCr Steel during the One-Step Quenching and Partitioning Process, Metall. Mater. Trans. A., 2010, 41(5), p 1284–1300.

    Article  CAS  Google Scholar 

  15. X. Li, L. Shi, Y. Liu, K. Gan and C. Liu, Achieving a desirable combination of mechanical properties in HSLA steel through step quenching, Mater. Sci. Eng. A, 2020, 772, p 138683.

    Article  CAS  Google Scholar 

  16. A. Ma, J. Jiang, N. Saito, I. Shigematsu, Y. Yuan, D. Yang and Y. Nishida, Improving Both Strength and Ductility of a Mg Alloy Through A Large Number of ECAP Passes, Mater. Sci. Eng. A, 2009, 513–514, p 122–127.

    Article  CAS  Google Scholar 

  17. A.A. Popov, A.G. Illarionov, S.I. Stepanov and O.M. Ivasishin, Effect of Quenching Temperature on Structure and Properties of Titanium Alloy: Physicomechanical Properties, Phys. Met. Metallogr., 2014, 115(5), p 517–522.

    Article  Google Scholar 

  18. R. Pourhamid and A. Shirazi, Microstructural Evolution and Mechanical Behaviors of Equal Channel Angular Pressed Copper, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 2019, 234(1), p 171–179.

    Article  CAS  Google Scholar 

  19. G. Purcek, H. Yanar, M. Demirtas, Y. Alemdag, D.V. Shangina and S.V. Dobatkin, Optimization of Strength, Ductility and Electrical Conductivity of Cu–Cr–Zr Alloy by Combining Multi-Route ECAP and Aging, Mater. Sci. Eng. A, 2016, 649, p 114–122.

    Article  CAS  Google Scholar 

  20. M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof and J. Sietsma, Microstructural Development During the Quenching and Partitioning Process in a Newly Designed Low-Carbon Steel, Acta Mater., 2011, 59(15), p 6059–6068.

    Article  CAS  Google Scholar 

  21. P.K. Sarkar and S.K. Kakoty, Effect of Quenching Parameters on Mechanical Properties of Bell Metal, Mater. Today Proc., 2020, 44, p 4179–4183.

    Article  CAS  Google Scholar 

  22. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe and R.Z. Valiev, Influence of ECAP Routes on the Microstructure and Properties of Pure Ti, Mater. Sci. Eng. A, 2001, 299(1), p 59–67.

    Article  Google Scholar 

  23. T. Tański, P. Snopiński and W. Borek, Strength and Structure of AlMg3 Alloy After ECAP and Post-ECAP Processing, Mater. Manuf. Processes, 2017, 32(12), p 1368–1374.

    Article  CAS  Google Scholar 

  24. Y.-X. Zhang, Y.-P. Yi, S.-Q. Huang and F. Dong, Influence of Quenching Cooling Rate on Residual Stress and Tensile Properties of 2A14 Aluminum Alloy Forgings, Mater. Sci. Eng. A, 2016, 674, p 658–665.

    Article  CAS  Google Scholar 

  25. M. Demirtaş, Processing of Grade a Low Carbon Steel by Equal Channel Angular Pressing, Nigde Omer Halisdemir Universitesi Mühendislik Bilimleri Dergisi, 2020, 9(1), p 557–564.

    Google Scholar 

  26. C. Ouchi, Development of Steel Plates by Intensive Use of TMCP and Direct Quenching Processes, ISIJ Int., 2001, 41(6), p 542–553.

    Article  CAS  Google Scholar 

  27. P. Kumar, C. Xu and T.G. Langdon, Mechanical Characteristics of a Zn–22% Al Alloy Processed to Very High Strains by ECAP, Mater. Sci. Eng., A, 2006, 429(1–2), p 324–328.

    Article  CAS  Google Scholar 

  28. O. Saray, G. Purcek, I. Karaman, T. Neindorf and H.J. Maier, Equal-Channel Angular Sheet Extrusion of Interstitial-Free (IF) Steel: Microstructural Evolution and Mechanical Properties, Mater. Sci. Eng. A, 2011, 528(21), p 6573–6583.

    Article  CAS  Google Scholar 

  29. J.K. Paik, H. Amlashi, B. Boon, K. Branner, P. Caridis, P. Das, M. Fujikubo, C.-H. Huang, L. Josefson and P. Kaeding. Committee III. 1 ultimate strength, 18th International Ship And Offshore Structures Congress. Schiffbautechnische Gesellschaft eV, 2012, p 285–363.

  30. T.G. Langdon, The principles of grain refinement in equal-channel angular pressing, Mater. Sci. Eng., 2007, 462(1–2), p 3–11.

    Article  CAS  Google Scholar 

  31. M. Soleimani, H. Mirzadeh and C. Dehghanian, Phase Transformation Mechanism and Kinetics During Step Quenching of st37 Low Carbon Steel, Mater. Res. Express, 2019, 6(11), p 1165f1162.

    Article  Google Scholar 

  32. Z.Q. Fan, T. Hao, S.X. Zhao, G.N. Luo, C.S. Liu and Q.F. Fang, The Microstructure and Mechanical Properties of T91 Steel Processed by ECAP at Room Temperature, J. Nucl. Mater., 2013, 434(1), p 417–421.

    Article  CAS  Google Scholar 

  33. P. Lehto, H. Remes, T. Saukkonen, H. Hänninen and J. Romanoff, Influence of Grain Size Distribution on the Hall–Petch Relationship of Welded Structural Steel, Mater. Sci. Eng. A, 2014, 592, p 28–39.

    Article  CAS  Google Scholar 

  34. H.S. Kim, W.S. Ryu, M. Janecek, S.C. Baik and Y. Estrin, Effect of Equal Channel Angular Pressing on Microstructure and Mechanical Properties of IF Steel, Adv. Eng. Mater., 2005, 7(1–2), p 43–46.

    Article  CAS  Google Scholar 

  35. T. Niendorf, D. Canadinc, H.J. Maier, I. Karaman and S.G. Sutter, On the Fatigue Behavior of Ultrafine-Grained Interstitial-Free Steel, Int. J. Mater. Res., 2006, 97(10), p 1328–1336.

    Article  CAS  Google Scholar 

  36. A. Belyakov, Y. Kimura and K. Tsuzaki, Recovery and Recrystallization in Ferritic Stainless Steel after Large Strain Deformation, Mater. Sci. Eng. A, 2005, 403(1), p 249–259.

    Article  CAS  Google Scholar 

  37. W. Łojkowski, On the Spreading of Grain Boundary Dislocations and Its Effect on Grain Boundary Properties, Acta Metall. Mater., 1991, 39(8), p 1891–1899.

    Article  Google Scholar 

  38. D.H. Shin, Plastic Flow Characteristics of Ultrafine Grained Low Carbon Steel During Tensile Deformation, Met. Mater. Int., 2001, 7(6), p 573–577.

    Article  CAS  Google Scholar 

  39. V.M. Segal, Equal Channel Angular Extrusion: From Macromechanics to Structure Formation, Mater. Sci. Eng. A, 1999, 271(1), p 322–333.

    Article  Google Scholar 

  40. C. Xu, M. Furukawa, Z. Horita and T.G. Langdon, The Evolution of Homogeneity and Grain Refinement During Equal-Channel Angular Pressing: A Model for Grain Refinement in ECAP, Mater. Sci. Eng., A, 2005, 398(1), p 66–76.

    Article  CAS  Google Scholar 

  41. Q. Xue, I.J. Beyerlein, D.J. Alexander and G.T. Gray, Mechanisms for Initial Grain Refinement in OFHC Copper During Equal Channel Angular Pressing, Acta Mater., 2007, 55(2), p 655–668.

    Article  CAS  Google Scholar 

  42. Y.T. Zhu and T.C. Lowe, Observations and Issues on Mechanisms of Grain Refinement During ECAP Process, Mater. Sci. Eng. A, 2000, 291(1), p 46–53.

    Article  Google Scholar 

  43. P.K. Katiyar, S. Misra and K. Mondal, Comparative Corrosion Behavior of Five Microstructures (Pearlite, Bainite, Spheroidized, Martensite, and Tempered Martensite) Made from a High Carbon Steel, Metall. Mater. Trans. A., 2019, 50(3), p 1489–1501.

    Article  CAS  Google Scholar 

  44. M. Soleimani, H. Mirzadeh and C. Dehghanian, Unraveling the Effect of Martensite Volume Fraction on the Mechanical and Corrosion Properties of Low-Carbon Dual-Phase Steel, Steel Res. Int., 2020, 91(2), p 1900327.

    Article  CAS  Google Scholar 

  45. W.R. Osório, L.C. Peixoto, L.R. Garcia and A. Garcia, Electrochemical Corrosion Response of a Low Carbon Heat Treated Steel in a NaCl Solution, Mater. Corros., 2009, 60(10), p 804–812.

    Article  CAS  Google Scholar 

  46. A. Di Schino and J.M. Kenny, Effects of the Grain Size on the Corrosion Behavior of Refined AISI 304 Austenitic Stainless Steels, J. Mater. Sci. Lett., 2002, 21(20), p 1631–1634.

    Article  Google Scholar 

  47. M. Hasegawa and M. Osawa, Corrosion Behavior of Ultrafine Grained Austenitic Stainless Steel, Corrosion, 1984, 40(7), p 371–374.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank to Professor Gencaga Purcek (Mechanical Engineering Department, Karadeniz Technical University) for sharing his laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Sekban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekban, D.M. Effects of Heat Treatment and Severe Plastic Deformation on Microstructure, Mechanical Properties and Midsection Ultimate Strength of Shipbuilding Steel. J. of Materi Eng and Perform 30, 7805–7816 (2021). https://doi.org/10.1007/s11665-021-06114-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06114-3

Keywords

Navigation