Skip to main content
Log in

Microstructure Characteristics and Elevated-Temperature Tensile Properties of Al-7Si-0.3Mg Alloys with Zr and Hf Addition

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure characteristics and the elevated-temperature tensile behavior of Al-7Si-0.3Mg alloys with Zr/Hf additions were studied. The results showed that the individual addition of Zr promoted the precipitation of β" precipitates and the best effect was achieved by their combined addition. The individual addition of Zr or Hf and the combined addition of Zr and Hf in alloy could cause a reduction in the elevated-temperature tensile strength. Al-7Si-0.3Mg-0.14Zr-0.44Hf alloy displayed a noticeable increase in the ductility coupled with a remarkable decrease in the strength at elevated-temperature tensile test. The degradation in the strength of all the alloys was attributed to the phase transformation and coarsening behavior. The pre-β and β precipitates played the main strengthening effect because of the fact that the additional Zr and/or Hf containing dispersoids (i.e., Si-Zr/Hf) had relatively large size, nanobelt/rectangle-like morphology, and thereby low number density and volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

References

  1. P. Prasad, Characterization of New, Cast, High Temperature Aluminum Alloys for Diesel Engine Applications, University of Cincinnati, PhD Diss., 2006.

    Google Scholar 

  2. M. Javidani and D. Larouche, Application of cast Al–Si Alloys in Internal Combustion Engine Components, Int. Mater. Rev., 2014, 59, p 132–158.

    Article  CAS  Google Scholar 

  3. M. Fadaei, H. Vafadar and A. Noorpoor, New Thermo-Mechanical Analysis of Cylinder Heads Using A Multi-Field Approach, Sci. Iran. B, 2011, 18, p 66–74.

    Article  Google Scholar 

  4. D. Pierce, A. Haynes, J. Hughes, R. Graves, P. Maziasz, G. Muralidharan, A. Shyam, B. Wang, R. England and C. Daniel, High Temperature Materials for Heavy Duty Diesel Engines: Historical and Future Trends, Prog. Mater. Sci., 2019, 103, p 109–179.

    Article  CAS  Google Scholar 

  5. H. Elhadari, H. Patel, D. Chen and W. Kasprzak, Tensile and Fatigue Properties of a Cast Aluminum Alloy with Ti, Zr and V Additions, Mater. Sci. Eng. A, 2011, 528, p 8128–8138.

    Article  CAS  Google Scholar 

  6. Z.Z. Zhao, H.X. Yin, A.M. Zhao et al., Effect of Sc Micro Alloying Addition on Microstructure and Mechanical Properties of as-cast Al–12Si Alloy, Mater. Sci. Eng. A, 2014, 35, p 133–137.

    Google Scholar 

  7. S. Mondol, S. Kashyap and S. Kumar, Improvement of High Temperature Strength of 2219 Alloy by Sc and Zr Addition Through a Novel Three-Stage Heat Treatment Route, Mater. Sci. Eng. A, 2018, 732, p 157–166.

    Article  CAS  Google Scholar 

  8. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman and D.L. Chen, Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-Additions of Ti, V, and Zr, Metall. Mater. Trans. A, 2015, 46, p 3063–3078.

    Article  CAS  Google Scholar 

  9. H.L. Huang, Y.H. Dong, Y. Xing, Z.H. Jia and Q. Liu, Low Cycle Fatigue Behaviour at 300 °C and Microstructure of Al-Si-Mg Casting Alloys with Zr and Hf Additions, J. Alloy. Compd., 2018, 765, p 1253–1262.

    Article  CAS  Google Scholar 

  10. K.E. Knipling, D.C. Dunand and D.N. Seidman, Criteria for Developing Castable, Creep-Resistant Aluminum-Based Alloys, Z. Metallkd, 2006, 97, p 246–265.

    Article  CAS  Google Scholar 

  11. J. Ding, P. Zhang, X.W. Li, L.S. Wang et al. Microstructure and Thermal Stability Evolution Behavior of Sc-containing A356.2 Aluminum Alloy Under Cyclic Thermal Exposure Conditions. Mater. Sci. Eng. A, 2018, 723, p 165–173.

    Article  Google Scholar 

  12. W. Kasprzak, B.S. Amirkhiz and M. Niewczas, Structure and Properties of cast Al-Si Based Alloy With Zr-V-Ti Additions and its Evaluation of High Temperature Performance, J. Alloy. Compd., 2014, 595, p 67–79.

    Article  CAS  Google Scholar 

  13. A.M.A. Mohamed, F.H. Samuel and S.A. Kahtani, Microstructure, Tensile Properties and Fracture Behavior of High Temperature Al-Si-Mg-Cu Cast Alloys, Mater. Sci. Eng. A, 2013, 577, p 64–72.

    Article  CAS  Google Scholar 

  14. H.L. Huang, M.P. Liu, X.L. Wang, Y. Xing, Z.H. Jia et al., Atomic Scale Analysis of Hf-Containing Precipitates in an Al-Si-Mg-Hf Alloy, J. Alloy. Compd., 2018, 741, p 1070–1079.

    Article  CAS  Google Scholar 

  15. X.L. Wang, Z.Q. Xie, H.L. Huang, Z.H. Jia, G. Yang, L. Gu and Q. Liu, Precipitation of (Si2-xAlx)Hf in the Al-Si-Mg-Hf Alloy, Microsc. Microanal., 2017, 23, p 724–729.

    Article  CAS  Google Scholar 

  16. Y. Xing, Z.H. Jia, J.H. Li, L.P. Ding, H.L. Huang and Q. Liu, Microstructure and Mechanical Properties of Foundry Al-Si-Cu-Hf alloy, Mater. Sci. Eng. A, 2018, 722, p 197–205.

    Article  CAS  Google Scholar 

  17. W.F. Miao and D.E. Laughlin, Effects of Cu Content and Pre aging on Precipitation Characteristics in Aluminum Alloy 6022, Metall. Mater. Trans. A, 1999, 3, p 361–371.

    Google Scholar 

  18. R. Chen, Q.Y. Xu, H.T. Guo, Z.Y. Xia, Q.F. Wu and B.C. Liu, Modeling the Precipitation Kinetics and Tensile Properties in Al-7Si-Mg cast aluminum alloys, Mater. Sci. Eng. A, 2017, 685, p 403–416.

    Article  CAS  Google Scholar 

  19. R.X. Li, R.D. Li and Y.H. Zhao, Age-Hardening Behavior of cast Al–Si Base Alloy, Mater. Lett., 2004, 58, p 2096–2101.

    Article  CAS  Google Scholar 

  20. M. Rahimian, S. Amirkhanlou, P. Blake and S. Ji, Nanoscale Zr-Containing Precipitates: a Solution for Significant Improvement of High-Temperature Strength in Al-Si-Cu-Mg Alloys, Mater. Sci. Eng. A, 2018, 721, p 328–338.

    Article  CAS  Google Scholar 

  21. G.Y. Liu, P. Blake, S.X. Ji. Effect of Zr on the High Cycle Fatigue and Mechanical Properties of Al–Si–Cu–Mg Alloys at Elevated Temperatures. J. Alloy. Compd. 2019, 809, p 151795.

    Article  Google Scholar 

  22. K.L. Fan, X.S. Liu, G.Q. He and H. Chen, Elevated Temperature Low Cycle Fatigue of a Gravity Casting Al-Si-Cu alloy used for Engine Cylinder Heads, Mater. Sci. Eng. A, 2015, 632, p 127–136.

    Article  CAS  Google Scholar 

  23. D.A. Lados and D. Apelian, Relationships Between Microstructure and Fatigue Crack Propagation Paths in Al–Si–Mg Cast Alloys, Eng. Fract. Mech., 2008, 75, p 821–832.

    Article  Google Scholar 

  24. U. De Francisco, N.O. Larrosa, M.J. Peel. Hydrogen Environmentally Assisted Cracking During Static Loading of AA7075 and AA7449. Mater. Sci. Eng. A 2019, p 138662.

  25. H.L. Huang, Z.H. Jia, Y. Xing, X.L. Wang and Q. Liu, Microstructure of Al-Si-Mg Alloy with Zr/Hf Additions During Solidification and Solution Treatment, Rare Met., 2019, 38, p 1033–1042.

    Article  CAS  Google Scholar 

  26. J.Y. Yao, D.A. Graham, B. Rinderer and M.J. Couper, A TEM Study of Precipitation in Al-Mg-Si Alloys, Micron, 2001, 32, p 865–870.

    Article  CAS  Google Scholar 

  27. J. W. Martin, Precipitation Hardening: Theory and Applications, Butterworth-Heinemann, 2012.

  28. L. Alyaldin, M.H. Abdelaziz, A.M. Samuel and F.H. Samuel, Effect of Ni and Mn Additions on the Ambient and High-Temperature Performance of Zr-Containing Al-Si-Cu-Mg-Based Alloys: Role of Precipitation Hardening, Int. J. Metal. Cast., 2019, 12, p 825–838.

    Article  Google Scholar 

  29. M.H. Abdelaziz, Microstructural and Mechanical Characterization of Transition Elements-Containing Al-Si-Cu-Mg Alloys For Elevated-Temperature Applications, Université du Québec à Chicoutimi, PhD Diss., 2018.

    Google Scholar 

  30. M.H. Abdelaziz, H.W. Doty, S. Valtierra and F.H. Samuel, Static Versus Dynamic Thermal Exposure of Transition Elements-Containing Al-Si-Cu-Mg Cast Alloy, Mater. Sci. Eng. A, 2019, 739, p 499–512.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Science and Technology Development Project of Guangdong Academy of Science (Grant No. 2020GDASYL-20200103131), National Natural Science Foundation of China (Grant No. 51871035), Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51421001) and Foundation and Applied Foundation Research of Guangdong Province (Grant No. 2019A15151101153)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Hu, C., Song, D. et al. Microstructure Characteristics and Elevated-Temperature Tensile Properties of Al-7Si-0.3Mg Alloys with Zr and Hf Addition. J. of Materi Eng and Perform 30, 9059–9066 (2021). https://doi.org/10.1007/s11665-021-06080-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06080-w

Keywords

Navigation