Skip to main content

Advertisement

Log in

Effects of Laser Polishing on Surface Characteristics and Wettability of Directed Energy-Deposited 316L Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Directed energy deposition (DED) is one of the most used additive manufacturing processes for the fabrication of 3D-metal components. However, surface quality is not always within the limits required for most applications. Post-processing operations can overcome such a limitation. Laser polishing (LP) can be performed with the use of a same energy source and same gripping position, thus improving both surface roughness and functional characteristics (e.g., wettability). However, the literature lacks studies on the process parameters and their influence on roughness and wettability characteristics. This article investigates the influence of LP on surface roughness and wettability of AISI 316L SS produced by DED and proposes equations that predict surface roughness and remelted layer thickness (RLT) as a function of laser power (P). The surfaces were characterized by metallographic analysis, microhardness, surface roughness parameters (Sa, Sz, Sku, and Ssk), and contact angle. The results showed a reduction of up to 86% in Sa, and the Sz/Sa ratio as a P-function was correlated to a surface improvement. Sku and Ssk help to better characterize the surface, thus affecting its wettability. The RLT displayed a linear and P-dependent behavior. No alteration in the microstructure/microhardness was observed after the LP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Haghdadi, M. Laleh, M. Moyle and S. Primig, Additive Manufacturing of Steels: A Review of Achievements and Challenges, J. Mater. Sci., 2021, 56(1), p 64–107. https://doi.org/10.1007/s10853-020-05109-0

    Article  CAS  Google Scholar 

  2. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen and D. Hui, Additive Manufacturing (3D Printing ): A Review of Materials, Methods, Applications and Challenges, Compos. Part B, 2018, 143(February), p 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  CAS  Google Scholar 

  3. ASTM, “Guide for Additive Manufacturing — Design — Directed Energy,” (West Conshohocken, PA.), 2019

  4. M. Mehrpouya, A. Dehghanghadikolaei, B. Fotovvati, A. Vosooghnia, S.S. Emamian and A. Gisario, The Potential of Additive Manufacturing in the Smart Factory Industrial 4.0: A Review, Appl. Sci., 2019, 9(18), p 3865. https://doi.org/10.3390/app9183865

    Article  Google Scholar 

  5. A. Bandyopadhyay, Y. Zhang and S. Bose, Recent Developments in Metal Additive Manufacturing, Curr. Opin. Chem. Eng., 2020, 28, p 96–104. https://doi.org/10.1016/j.coche.2020.03.001

    Article  Google Scholar 

  6. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De and W. Zhang, Additive Manufacturing of Metallic Components—Process, Structure and Properties, Prog. Mater. Sci., 2018, 92, p 112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  CAS  Google Scholar 

  7. ASTM International, ASTM F3187-16, Standard Guide for Directed Energy Deposition of Metals, 2016, p 1–22

  8. K. Alrbaey, D.I. Wimpenny and A. Moroz, Electropolishing of Re-Melted SLM Stainless Steel 316L Parts Using Deep Eutectic Solvents: 3 9 3 Full Factorial Design, J. Mater. Eng. Perform., 2016, 25(7), p 2836–2846. https://doi.org/10.1007/s11665-016-2140-2

    Article  CAS  Google Scholar 

  9. A. Huckstepp, Digital Alloys’ Guide to Metal Additive Manufacturing – Part 11: Surface Roughness, Digital Alloys, 2019

  10. A.M.K. Hafiz, E.V. Bordatchev and R.O. Tutunea-Fatan, Influence of Overlap between the Laser Beam Tracks on Surface Quality in Laser Polishing of AISI H13 Tool Steel, J. Manuf. Process., 2012, 14(4), p 425–434. https://doi.org/10.1016/j.jmapro.2012.09.004

    Article  Google Scholar 

  11. M. Marya, V. Singh, J.Y. Hascoet and S. Marya, A Metallurgical Investigation of the Direct Energy Deposition Surface Repair of Ferrous Alloys, J. Mater. Eng. Perform., 2018, 27(2), p 813–824. https://doi.org/10.1007/s11665-017-3117-5

    Article  CAS  Google Scholar 

  12. A. Saboori, A. Aversa, G. Marchese, S. Biamino, M. Lombardi, and P. Fino, Application of Directed Energy Deposition-Based Additive Manufacturing in Repair, Appl. Sci., 2019, 9(16). https://doi.org/10.3390/app9163316

  13. D. Ahn, H. Lee, J. Cho and D. Guk, Improvement of the Wear Resistance of Hot Forging Dies Using a Locally Selective Deposition Technology with Transition Layers, CIRP Ann. Manuf. Technol., 2016, 65(1), p 257–260. https://doi.org/10.1016/j.cirp.2016.04.013

    Article  Google Scholar 

  14. M. Soshi, J. Ring, C. Young, Y. Oda and M. Mori, Innovative Grid Molding and Cooling Using an Additive and Subtractive Hybrid CNC Machine Tool, CIRP Ann. Manuf. Technol., 2017, 66(1), p 401–404. https://doi.org/10.1016/j.cirp.2017.04.093

    Article  Google Scholar 

  15. P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe and E.A. Jägle, Steels in Additive Manufacturing: A Review of Their Microstructure and Properties, Mater. Sci. Eng. A, 2019, 2020, p 772. https://doi.org/10.1016/j.msea.2019.138633

    Article  CAS  Google Scholar 

  16. A. Saboori, A. Aversa, G. Marchese, S. Biamino, M. Lombardi and P. Fino, Microstructure and Mechanical Properties of AISI 316L Produced by Directed Energy Deposition-Based Additive Manufacturing: A Review, Appl. Sci., 2020 https://doi.org/10.3390/app10093310

    Article  Google Scholar 

  17. A. Azarniya, X.G. Colera, M.J. Mirzaali, S. Sovizi, F. Bartolomeu, M.K. St Weglowski, W.W. Wits, C.Y. Yap, J. Ahn, G. Miranda, F.S. Silva, H.R. Madaah Hosseini, S. Ramakrishna and A.A. Zadpoor, Additive Manufacturing of Ti–6Al–4V Parts through Laser Metal Deposition (LMD): Process, Microstructure, and Mechanical Properties, J. Alloys Compd., 2019, 804, p 163–191. https://doi.org/10.1016/j.jallcom.2019.04.255

    Article  CAS  Google Scholar 

  18. A. Wiberg, J. Persson and J. Ölvander, Design for Additive Manufacturing—A Review of Available Design Methods and Software, Rapid Prototyp. J., 2019, 25(6), p 1080–1094. https://doi.org/10.1108/RPJ-10-2018-0262

    Article  Google Scholar 

  19. Y. Kaynak and O. Kitay, The Effect of Post-Processing Operations on Surface Characteristics of 316L Stainless Steel Produced by Selective Laser Melting, Addit. Manuf., 2018, 2019(26), p 84–93. https://doi.org/10.1016/j.addma.2018.12.021

    Article  CAS  Google Scholar 

  20. H. Hassanin, A. Elshaer, R. Benhadj-Djilali, F. Modica, and I. Fassi, Surface Finish Improvement of Additive Manufactured Metal Parts, Micro and Precision Manufacturing, K. Gupta, Ed., Springer, Cham, 2018, p 145–164. https://doi.org/10.1007/978-3-319-68801-5_7

  21. L. Denti and A. Sola, On the Effectiveness of Different Surface Finishing Techniques on A357.0 Parts Produced by Laser-Based Powder Bed Fusion: Surface Roughness and Fatigue Strength, Metals (Basel), 2019, 9(12), p 1284. https://doi.org/10.3390/met9121284

    Article  CAS  Google Scholar 

  22. F. Bruzzo, G. Catalano, A.G. Demir and B. Previtali, Surface Finishing by Laser Re-Melting Applied to Robotized Laser Metal Deposition, Opt. Lasers Eng., 2020, 2021, p 137. https://doi.org/10.1016/j.optlaseng.2020.106391

    Article  Google Scholar 

  23. Y. Tian, D. Tomus, A. Huang and X. Wu, Melt Pool Morphology and Surface Roughness Relationship for Direct Metal Laser Solidification of Hastelloy X, Rapid Prototyp. J., 2020, 26(8), p 1389–1399.

    Article  Google Scholar 

  24. Y. Zhao, J. Sun, J. Li, P. Wang, Z. Zheng, J. Chen and Y. Yan, The Stress Coupling Mechanism of Laser Additive and Milling Subtractive for FeCr Alloy Made by Additive –Subtractive Composite Manufacturing, J. Alloys Compd., 2018, 769, p 898–905. https://doi.org/10.1016/j.jallcom.2018.08.079

    Article  CAS  Google Scholar 

  25. S. Greco, S. Kieren-Ehses, B. Kirsch and J.C. Aurich, Micro Milling of Additively Manufactured AISI 316L: Impact of the Layerwise Microstructure on the Process Results, Int. J. Adv. Manuf. Technol., 2021, 112(1–2), p 361–373. https://doi.org/10.1007/s00170-020-06387-3

    Article  Google Scholar 

  26. O. Oyelola, P. Crawforth, R. M’Saoubi and A.T. Clare, Machining of Additively Manufactured Parts: Implications for Surface Integrity, Procedia CIRP, 2016, 45, p 119–122. https://doi.org/10.1016/j.procir.2016.02.066

    Article  Google Scholar 

  27. J. Guo, M. Goh, Z. Zhu, X. Lee, M.L.S. Nai and J. Wei, On the Machining of Selective Laser Melting CoCrFeMnNi High-Entropy Alloy, Mater. Des., 2018, 153, p 211–220. https://doi.org/10.1016/j.matdes.2018.05.012

    Article  CAS  Google Scholar 

  28. Y. Lu, G.F. Sun, Z.D. Wang, B.Y. Su, Y.K. Zhang and Z.H. Ni, The Effects of Laser Peening on Laser Additive Manufactured 316L Steel, Int. J. Adv. Manuf. Technol., 2020, 107(5–6), p 2239–2249. https://doi.org/10.1007/s00170-020-05167-3

    Article  Google Scholar 

  29. M. Sugavaneswaran, A.V. Jebaraj, M.D.B. Kumar, K. Lokesh and A.J. Rajan, Enhancement of Surface Characteristics of Direct Metal Laser Sintered Stainless Steel 316L by Shot Peening, Surf. Interfaces, 2018, 12(May), p 31–40. https://doi.org/10.1016/j.surfin.2018.04.010

    Article  CAS  Google Scholar 

  30. M. Salmi, J. Huuki and I.F. Ituarte, The Ultrasonic Burnishing of Cobalt-Chrome and Stainless Steel Surface Made by Additive Manufacturing, Prog. Addit. Manuf., 2017, 2(1–2), p 31–41. https://doi.org/10.1007/s40964-017-0017-z

    Article  Google Scholar 

  31. J. Zhang, A. Chaudhari and H. Wang, Surface Quality and Material Removal in Magnetic Abrasive Finishing of Selective Laser Melted 316L Stainless Steel, J. Manuf. Process., 2019, 45(February), p 710–719. https://doi.org/10.1016/j.jmapro.2019.07.044

    Article  Google Scholar 

  32. H. Yamaguchi, O. Fergani and P.Y. Wu, Modification Using Magnetic Field-Assisted Finishing of the Surface Roughness and Residual Stress of Additively Manufactured Components, CIRP Ann. Manuf. Technol., 2017, 66(1), p 305–308. https://doi.org/10.1016/j.cirp.2017.04.084

    Article  Google Scholar 

  33. P. Tyagi, T. Goulet, C. Riso, R. Stephenson, N. Chuenprateep, J. Schlitzer, C. Benton and F. Garcia-Moreno, Reducing the Roughness of Internal Surface of an Additive Manufacturing Produced 316 Steel Component by Chempolishing and Electropolishing, Addit. Manuf., 2018, 2019(25), p 32–38. https://doi.org/10.1016/j.addma.2018.11.001

    Article  CAS  Google Scholar 

  34. Y. Bai, C. Zhao, J. Yang, J.Y.H. Fuh, W.F. Lu, C. Weng and H. Wang, Dry Mechanical-Electrochemical Polishing of Selective Laser Melted 316L Stainless Steel, Mater. Des., 2020, 193, p 108840. https://doi.org/10.1016/j.matdes.2020.108840

    Article  CAS  Google Scholar 

  35. D. Wang, Y. Liu, Y. Yang and D. Xiao, Theoretical and Experimental Study on Surface Roughness of 316L Stainless Steel Metal Parts Obtained through Selective Laser Melting, Rapid Prototyp. J., 2016, 22(4), p 706–716. https://doi.org/10.1108/RPJ-06-2015-0078

    Article  Google Scholar 

  36. L. Giorleo, E. Ceretti and C. Giardini, Ti Surface Laser Polishing: Effect of Laser Path and Assist Gas, Procedia CIRP, 2015, 33, p 446–451. https://doi.org/10.1016/j.procir.2015.06.102

    Article  Google Scholar 

  37. J. Kumstel, Laser Polishing of Metallic Freeform Surfaces by Using a Dynamic Laser Beam Preforming System, J. Laser Appl., 2021, 33, p 022020. https://doi.org/10.2351/1.5128459

    Article  CAS  Google Scholar 

  38. B. Rosa, P. Mognol and J. Hascoët, Laser Polishing of Additive Laser Manufacturing Surfaces, J. Laser Appl., 2015, 27(S2), p S29102. https://doi.org/10.2351/1.4906385

    Article  Google Scholar 

  39. J. Dos Santos Solheid, H.J. Seifert and W. Pfleging, Laser Surface Modification and Polishing of Additive Manufactured Metallic Parts, Procedia CIRP, 2018, 74, p 280–284. https://doi.org/10.1016/j.procir.2018.08.111

    Article  Google Scholar 

  40. N. Islam, J. Schanz, D. Kolb and H. Riegel, Improvement of Surface Quality and Process Area Rate in Selective Laser Melting by Beam Oscillation Scan Technique, J. Mater. Eng. Perform., 2021 https://doi.org/10.1007/s11665-021-05665-9

    Article  Google Scholar 

  41. T. Ermergen and F. Taylan, Review on Surface Quality Improvement of Additively Manufactured Metals by Laser Polishing, Arab. J. Sci. Eng., 2021 https://doi.org/10.1007/s13369-021-05658-9

    Article  Google Scholar 

  42. S. Marimuthu, A. Triantaphyllou, M. Antar, D. Wimpenny, H. Morton and M. Beard, Laser Polishing of Selective Laser Melted Components, Int. J. Mach. Tools Manuf., 2015, 95, p 97–104. https://doi.org/10.1016/j.ijmachtools.2015.05.002

    Article  Google Scholar 

  43. A. Temmler, D. Liu, J. Preußner, S. Oeser, J. Luo, R. Poprawe and J.H. Schleifenbaum, Influence of Laser Polishing on Surface Roughness and Microstructural Properties of the Remelted Surface Boundary Layer of Tool Steel H11, Mater. Des., 2020, 192, p 108689. https://doi.org/10.1016/j.matdes.2020.108689

    Article  CAS  Google Scholar 

  44. L. Chen, B. Richter, X. Zhang, X. Ren and F.E. Pfefferkorn, Modification of Surface Characteristics and Electrochemical Corrosion Behavior of Laser Powder Bed Fused Stainless-Steel 316L after Laser Polishing, Addit. Manuf., 2019, 2020(32), p 101013. https://doi.org/10.1016/j.addma.2019.101013

    Article  CAS  Google Scholar 

  45. F.E. Pfefferkorn, N.A. Duffie, J.D. Morrow and Q. Wang, Effect of Beam Diameter on Pulsed Laser Polishing of S7 Tool Steel, CIRP Ann. Manuf. Technol., 2014, 63(1), p 237–240. https://doi.org/10.1016/j.cirp.2014.03.055

    Article  Google Scholar 

  46. L. Cao, S. Chen, M. Wei, Q. Guo, J. Liang, C. Liu and M. Wang, Effect of Laser Energy Density on Defects Behavior of Direct Laser Depositing 24CrNiMo Alloy Steel, Opt. Laser Technol., 2018, 2019(111), p 541–553. https://doi.org/10.1016/j.optlastec.2018.10.025

    Article  CAS  Google Scholar 

  47. L. Chen, B. Richter, X. Zhang, K.B. Bertsch, D.J. Thoma and E. Pfefferkorn, A Effect of Laser Polishing on the Microstructure and Mechanical Properties of Stainless Steel 316L Fabricated by Laser Powder Bed Fusion, Mater. Sci. Eng. A, 2020, 2021(802), p 140579. https://doi.org/10.1016/j.msea.2020.140579

    Article  CAS  Google Scholar 

  48. D. Zhang, J. Yu, H. Li, X. Zhou, C. Song and C. Zhang, Investigation of Laser Polishing of Four Selective Laser Melting Alloy Samples, Appl. Sci., 2020 https://doi.org/10.3390/app10030760

    Article  Google Scholar 

  49. K.J. Kubiak, M.C.T. Wilson, T.G. Mathia and P. Carval, Wettability versus Roughness of Engineering Surfaces, Wear, 2011, 271, p 523–528. https://doi.org/10.1016/j.wear.2010.03.029

    Article  CAS  Google Scholar 

  50. C. Ma, S. Bai, X. Peng and Y. Meng, Anisotropic Wettability of Laser Micro-Grooved SiC Surfaces, Appl. Surf. Sci., 2013, 284, p 930–935. https://doi.org/10.1016/j.apsusc.2013.08.055

    Article  CAS  Google Scholar 

  51. S. Mukherjee, S. Dhara and P. Saha, Enhanced Corrosion, Tribocorrosion Resistance and Controllable Osteogenic Potential of Stem Cells on Micro-Rippled Ti6Al4V Surfaces Produced by Pulsed Laser Remelting, J. Manuf. Process., 2021, 65(March), p 119–133. https://doi.org/10.1016/j.jmapro.2021.03.023

    Article  Google Scholar 

  52. J. Zhao, J. Guo, P. Shrotriya, Y. Wang and Y. Han, A Rapid One-Step Nanosecond Laser Process for Fabrication of Super- Hydrophilic Aluminum Surface, Opt. Laser Technol., 2019, 117(1038), p 134–141. https://doi.org/10.1016/j.optlastec.2019.04.015

    Article  CAS  Google Scholar 

  53. D. Kwon, S. Wooh, H. Yoon and K. Char, Mechanoresponsive Tuning of Anisotropic Wetting on Hierarchically Structured Patterns, Langmuir, 2018, 34(16), p 4732–4738. https://doi.org/10.1021/acs.langmuir.8b00496

    Article  CAS  Google Scholar 

  54. K.C. Yung, S.S. Zhang, L. Duan, H.S. Choy and Z.X. Cai, Laser Polishing of Additive Manufactured Tool Steel Components Using Pulsed or Continuous-Wave Lasers, Int. J. Adv. Manuf. Technol., 2019, 105(1–4), p 425–440. https://doi.org/10.1007/s00170-019-04205-z

    Article  Google Scholar 

  55. A. Ascari, A.H.A. Lutey, E. Liverani and A. Fortunato, Laser Directed Energy Deposition of Bulk 316L Stainless Steel, Lasers Manuf. Mater. Process., 2020, 7(4), p 426–448. https://doi.org/10.1007/s40516-020-00128-w

    Article  Google Scholar 

  56. H. Fayazfar, M. Salarian, A. Rogalsky, D. Sarker, P. Russo, V. Paserin and E. Toyserkani, A Critical Review of Powder-Based Additive Manufacturing of Ferrous Alloys: Process Parameters, Microstructure and Mechanical Properties, Mater. Des., 2018, 144, p 98–128. https://doi.org/10.1016/j.matdes.2018.02.018

    Article  CAS  Google Scholar 

  57. H. Le, P. Penchev, A. Henrottin, D. Bruneel, V. Nasrollahi, J.A. Ramos-de-Campos and S. Dimov, Effects of Top-Hat Laser Beam Processing and Scanning Strategies in Laser Micro-Structuring, Micromachines, 2020, 11(2), p 1–17. https://doi.org/10.3390/mi11020221

    Article  CAS  Google Scholar 

  58. A. Saboori, G. Piscopo, M. Lai, A. Salmi and S. Biamino, An Investigation on the Effect of Deposition Pattern on the Microstructure, Mechanical Properties and Residual Stress of 316L Produced by Directed Energy Deposition, Mater. Sci. Eng. A, 2020, 780, p 139179. https://doi.org/10.1016/j.msea.2020.139179

    Article  CAS  Google Scholar 

  59. K.S.B. Ribeiro, F.E. Mariani and R.T. Coelho, A Study of Different Deposition Strategies in Direct Energy Deposition (DED) Processes, Procedia Manuf., 2020, 48, p 663–670. https://doi.org/10.1016/j.promfg.2020.05.158

    Article  Google Scholar 

  60. G. Barragan, D. Rojas, J. Grass, F. Mariani and R. Coelho, Characterization and Optimization of Process Parameters for Directed Energy Deposition Powder-Fed Laser, System, 2021 https://doi.org/10.1007/s11665-021-05762-9

    Article  Google Scholar 

  61. ASTM International, “Standard Test Method for Microindentation Hardness of Materials,” 2017, p 1–40, https://doi.org/10.1520/E0384-17

  62. F. Rupp, R.A. Gittens, L. Scheideler, A. Marmur, B.D. Boyan, Z. Schwartz and J. Geis-gerstorfer, A Review on the Wettability of Dental Implant Surfaces I: Theoretical and Experimental Aspects, Acta Biomater., 2014, 10(7), p 2894–2906. https://doi.org/10.1016/j.actbio.2014.02.040

    Article  CAS  Google Scholar 

  63. J. Yu, M. Rombouts and G. Maes, Cracking Behavior and Mechanical Properties of Austenitic Stainless Steel Parts Produced by Laser Metal Deposition, Mater. Des., 2013, 45, p 228–235. https://doi.org/10.1016/j.matdes.2012.08.078

    Article  CAS  Google Scholar 

  64. M.A. Obeidi, E. McCarthy, B. O’Connell, I.U. Ahad and D. Brabazon, Laser Polishing of Additive Manufactured 316L Stainless Steel Synthesized by Selective Laser Melting, Mater. Basel., 2019 https://doi.org/10.3390/ma12060991

    Article  Google Scholar 

  65. M.A. Obeidi, E. Mccarthy, L. Kailas and D. Brabazon, Laser Surface Texturing of Stainless Steel 316L Cylindrical Pins for Interference Fit Applications, J. Mater. Process. Tech., 2017, 2018(252), p 58–68. https://doi.org/10.1016/j.jmatprotec.2017.09.016

    Article  CAS  Google Scholar 

  66. K. Hiroshi, T. Makoto and I. Kenji, Nanoindentation Hardness Test for Estimation of Vickers Hardness, Trans JWRI, 2006, 35(1), p 57–61.

    Google Scholar 

  67. E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa, and H.H. Soliman, Roughness Parameters, J. Mater. Process. Technol., 2002, 123, p 133–145, https://doi.org/10.1016/S0924-0136(02)00060-2

  68. D. Kubies, L. Himmlová, T. Riedel, E. Chánová, K. Balík, M.D.Ě Rová, J. Bártová and V. Pešáková, The Interaction of Osteoblasts With Bone-Implant Materials: 1, Effect Physicochem. Surf. Prop. Implant Mater., 2011, 8408, p 95–111. https://doi.org/10.33549/physiolres.931882

    Article  Google Scholar 

  69. E. Ukar, A. Lamikiz, S. Martínez, I. Tabernero and L.N.L. De Lacalle, Roughness Prediction on Laser Polished Surfaces, J. Mater. Process. Tech., 2012, 212(6), p 1305–1313. https://doi.org/10.1016/j.jmatprotec.2012.01.007

    Article  CAS  Google Scholar 

  70. R. Thomas, Characterization of Surface Roughness, Precis. Eng., 1981 https://doi.org/10.1016/0141-6359(81)90043-X

    Article  Google Scholar 

  71. M.J.K. Lodhi, K.M. Deen, M.C. Greenlee-wacker and W. Haider, Additively Manufactured 316L Stainless Steel with Improved Corrosion Resistance and Biological Response for Biomedical Applications, Addit. Manuf., 2018, 2019(27), p 8–19. https://doi.org/10.1016/j.addma.2019.02.005

    Article  CAS  Google Scholar 

  72. R. Wenzel, Resistance of Solid Surfaces to Wetting by Water, Indus. Eng. Chem., 1936, 28(8), p 988–994. https://doi.org/10.1021/ie50320a024

    Article  CAS  Google Scholar 

  73. D. Bhaduri, P. Penchev, A. Batal, S. Dimov, S. Leung, S. Sten, U. Harrysson, Z. Zhang and H. Dong, Applied Surface Science Laser Polishing of 3D Printed Mesoscale Components, Appl. Surf. Sci., 2017, 405, p 29–46. https://doi.org/10.1016/j.apsusc.2017.01.211

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of São Paulo Research Foundation (FAPESP)—Grant Numbers 2016/11309-0, 2019/10758-4, 2019/26362-2—and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Ferreira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Additive Manufacturing. The issue was organized by Dr. William Frazier, Pilgrim Consulting, LLC; Mr. Rick Russell, NASA; Dr. Yan Lu, NIST; Dr. Brandon D. Ribic, America Makes; and Caroline Vail, NSWC Carderock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, A.M., Ferreira, R., Barragán, G. et al. Effects of Laser Polishing on Surface Characteristics and Wettability of Directed Energy-Deposited 316L Stainless Steel. J. of Materi Eng and Perform 30, 6752–6765 (2021). https://doi.org/10.1007/s11665-021-05991-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05991-y

Keywords

Navigation