Skip to main content
Log in

Effect of Interfacial Microstructure on Mechanical Properties of Cold Pressure-Welded Al-Cu Joints Subjected to Annealing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

We developed a cold pressure-welding process for manufacturing Al-Cu plate butt joints and investigated the relationship between the interfacial microstructure and tensile properties. In the as-welded state, the grain sizes of Al and Cu were refined compared to those before welding. CuAl2 of thickness less than 150 nm was present at the interfacial layer, and Al and Cu were bonded via CuAl2. When the welded joint was annealed at 773 K for 7.2 ks, the total thickness of the intermetallic compound (IMC) layers increased with annealing temperature; layers of CuAl2 and mixed Al2Cu3+Al4Cu9+AlCu3 were formed from the Al side toward Cu. Interfacial fractures were confirmed in some welded joints when the total IMC layer thickness exceeded 4.3 μm; these fractures were observed at the Al-CuAl2 boundary. The growth of the IMC layers was dependent on the diffusion mechanism, and the calculated apparent activation energy was 99.7 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

All data are available from the corresponding author on reasonable request.

References

  1. M. Abbasi, A.K. Taheri and M.T. Salehi, Growth Rate of Intermetallic Compounds in Al/Cu Bimetal Produced by Cold Roll Welding Process, J. Alloys Compd., 2001, 319(1–2), p 233–241.

    Article  CAS  Google Scholar 

  2. A. Abdollah-Zadeh, T. Saeid and B. Sazgari, Microstructural and Mechanical Properties of Friction Stir Welded Aluminum/Copper Lap Joints, J. Alloys Compd., 2008, 460(1–2), p 535–538.

    Article  CAS  Google Scholar 

  3. M. Acarer, Electrical, Corrosion, and Mechanical Properties of Aluminum-Copper Joints Produced by Explosive Welding, J. Mater. Eng. Perform., 2012, 21, p 2375–2379.

    Article  CAS  Google Scholar 

  4. H. Amani and M. Soltanieh, Intermetallic Phase Formation in Explosively Welded Al/Cu Bimetals, Metall. Mater. Trans. B., 2016, 47B, p 2524–2534.

    Article  Google Scholar 

  5. M. Asemabadi, M. Sedighi and M. Honarpisheh, Investigation of Cold Rolling Influence on the Mechanical Properties of Explosive-Welded Al/Cu Bimetal, Mater. Sci. Eng. A., 2012, 558, p 144–149.

    Article  CAS  Google Scholar 

  6. R. Balasundaram, V.K. Patel, S.D. Bhole and D.L. Chen, Effect of Zinc Interlayer on Ultrasonic Spot Welded Aluminum-to-Copper Joints, Mater. Sci. Eng A., 2014, 607, p 277–286.

    Article  CAS  Google Scholar 

  7. C.Y. Chen, H.L. Chen and W.S. Hwang, Influence of Interfacial Structure Development on the Fracture Mechanism and Bond Strength of Aluminum/Copper Bimetal Plate, Mater. Trans., 2006, 47(4), p 1232–1239.

    Article  CAS  Google Scholar 

  8. S. Chen, H. Dong, P. Li, S. Niu, L. Yu and H. Ji, Microstructure and Mechanical Property of Aluminum/Copper Dissimilar Friction Welded Joints, Weld J., 2017, 96, p 63–70.

    Google Scholar 

  9. C.Y. Chen and W.S. Hwang, Effect of Annealing on the Interfacial Structure of Aluminum-Copper Joints, Mater. Trans., 2007, 48(7), p 1938–1947.

    Article  CAS  Google Scholar 

  10. T. Enjo, K. Ikeuchi and N. Akikawa, Diffusion Welding of Copper to Aluminum, J. Jpn. Weld. Soc., 1979, 48(10), p 32–37.

    Article  Google Scholar 

  11. Y. Funamizu and K. Watanabe, Interdiffusion in the Al-Cu System, Trans. JIM., 1971, 12(3), p 147–152.

    Article  CAS  Google Scholar 

  12. I. Galvão, R.M. Leal, A. Loureiro and D.M. Rodrigues, Material Flow in Heterogeneous Friction Stir Welding of Aluminum and Copper tin Sheets, Sci. Technol. Weld Joining., 2010, 15(8), p 654–660.

    Article  Google Scholar 

  13. I. Galvão, J.C. Oliveira, A. Loureiro and D.M. Rodrigues, Formation and Distribution of Brittle Structures in Friction Stir Welding of Aluminum and Copper: Influence Of Shoulder Geometry, Intermetallics, 2012, 22, p 122–128.

    Article  Google Scholar 

  14. Y. Guo, G. Liu, H. Jin, Z. Shi and G. Qiao, Intermetallic Phase Formation In Diffusion-Bonded Cu/Al Laminates, J. Mater. Sci., 2011, 46, p 2467–2473.

    Article  CAS  Google Scholar 

  15. E.B. Hannech, N. Lamoudi, N. Benslim and B. Makhloufi, Intermetallic Formation in the Aluminum-Copper System, Surf. Rev. Lett., 2003, 10(4), p 677–683.

    Article  CAS  Google Scholar 

  16. M. Honarpisheh, M. Asemabadi and M. Sedighi, Investigation of Annealing Treatment on the Interfacial Properties of Explosive-Welded Al/Cu/Al Multilayer, Mater. Des., 2012, 37, p 122–127.

    Article  CAS  Google Scholar 

  17. F. Ji, S. Xue and W. Dai, Reliability Studies of Cu/Al Joints Brazed with Zn-Al-Ce Filler Metals, Mater. Des., 2012, 42, p 156–163.

    Article  CAS  Google Scholar 

  18. F. Ji, S. Xue, J. Lou, Y. Lou and S. Wang, Microstructure and Properties of Cu/Al Joints Brazed with Zn-Al Filler Metals, Trans. Nonferrous Metals Soc. Chn., 2012, 22(2), p 281–287.

    Article  CAS  Google Scholar 

  19. M. Kimura, Y. Inui, M. Kusaka, K. Kaizu and A. Fuji, Joining phenomena and Tensile Strength of Friction Welded Joint Between Pure Aluminum and Pure Copper, Mech. Eng. J., 2015, 2(1), p 1–14.

    Article  Google Scholar 

  20. W.B. Lee, K.S. Bang and S.B. Jung, Effects of Intermetallic Compound on the Electrical and Mechanical Properties of Friction Welded Cu/Al Bimetallic Joints During Annealing, J. Alloys. Compd., 2005, 390(1–2), p 212–219.

    Article  CAS  Google Scholar 

  21. X. Li, G. Zu, M. Ding, Y. Mu and P. Wang, Interfacial Microstructure and Mechanical Properties of Cu/Al Clad Sheet Fabricated by Asymmetrical Roll Bonding and Annealing, Mater. Sci. Eng. A., 2011, 529, p 485–491.

    Article  CAS  Google Scholar 

  22. X.B. Li, G.Y. Zu and P. Wang, Microstructural Development and its Effects on Mechanical Properties of Al/Cu Laminated Composite, Trans. Nonferrous Metals Soc. Chn., 2015, 25, p 36–45.

    Article  CAS  Google Scholar 

  23. Mao Z, Xie J, Wang A, Wang W, Ma D, Liu P. Effects of Annealing Temperature on the Interfacial Microstructure and Bonding Strength of Cu/Al Clad Sheets Produced by Twin-Roll Casting and Rolling. J. Mater. Process. Technol. 2020;285:116804.

  24. K.P. Mehta and V.J. Badheka, Hybrid Approaches of Assisted Heating and Cooling for Friction Stir Welding of Copper to Aluminum Joints, J. Mater. Process. Technol., 2017, 239, p 336–345.

    Article  CAS  Google Scholar 

  25. Nagasaki S, Hirabayashi M (2002) Binary Alloy Phase Diagram, AGNE Gijutsu Center, 27.

  26. L. Pan, P. Li, X. Hao, J. Zhou and H. Dong, Inhomogeneity of Microstructure and Mechanical Properties in Radial Direction of Aluminum/Copper Friction Welded Joints, J. Mater. Process. Technol., 2018, 255, p 308–318.

    Article  CAS  Google Scholar 

  27. T. Saeid, A. Abdollah-zadeh and B. Sazgari, Weldability and Mechanical Properties of Dissimilar Aluminum-Copper Lap Joints Made by Friction Stir Welding, J. Alloys Compd., 2010, 490(1–2), p 652–655.

    Article  CAS  Google Scholar 

  28. M. Sahin, Joining of Aluminum and Copper Materials with Friction Welding, Int. J. Adv. Manuf. Technol., 2010, 49, p 527–534.

    Article  Google Scholar 

  29. L.Y. Sheng, F. Yang, T.F. Xi, C. Lai and H.Q. Ye, Influence of Heat Treatment on Interface of Cu/Al Bimetal Composite Fabricated By Cold Rolling, Composites B., 2011, 42(6), p 1468–1473.

    Article  Google Scholar 

  30. T. Solchenbach, P. Plapper and W. Cai, Electrical Performance of Laser Braze-Welded Aluminum-Copper Interconnects, J. Manuf. Proc., 2014, 16(2), p 183–189.

    Article  Google Scholar 

  31. C.W. Tan, Z.G. Jiang, L.Q. Li, Y.B. Chen and X.Y. Chen, Microstructure Evolution and Mechanical Properties of Dissimilar Al-Cu Joints Produced by Friction Stir Welding, Mater Des., 2013, 51, p 466–473.

    Article  CAS  Google Scholar 

  32. M. Weigl, F. Albert and M. Schmidt, Enhancing Ductility Of Laser-Welded Copper-Aluminum Connections by Using Adapted Filler Materials, Phys. Procedia., 2011, 12B, p 332–338.

    Article  Google Scholar 

  33. H. Woźniak, The Results of the so far Performed Investigation of Al-Cu butt Cold Pressure Welding by the Method of Upsetting, Arch. Civil. Mech. Eng., 2009, 9(1), p 135–145.

    Article  Google Scholar 

  34. C. Xia, Y. Li, U.A. Puchkov, S.A. Gerasimov and J. Wang, Microstructure and Phase Constitution Near The Interface of Cu/Al Vacuum Brazing Al-Si Filler Metal, Vacuum, 2008, 82(8), p 799–804.

    Article  CAS  Google Scholar 

  35. Y. Xiao, H. Ji, M. Li and J. Kim, Ultrasound-Assisted Brazing of Cu/Al Dissimilar Metals Using a Zn-3Al Filler Metal, Mater. Des., 2013, 52, p 740–747.

    Article  CAS  Google Scholar 

  36. P. Xue, B.L. Xiao and Z.Y. Ma, Effect of Interfacial Microstructure Evolution on Mechanical Properties and Fracture Behavior of Friction Stir-Welded Al-Cu Joints, Metall. Mater. Trans A., 2015, 46A, p 3091–3103.

    Article  Google Scholar 

  37. P. Xue, B.L. Xiao, D.R. Ni and Z.Y. Ma, Enhanced Mechanical Properties Of Friction Stir Welded Dissimilar Al-Cu Joint by Intermetallic Compounds, Mater. Sci. Eng A., 2010, 527(21–22), p 5723–5727.

    Article  Google Scholar 

  38. D. Zuo, S. Hu, J. Shen and Z. Xue, Intermediate Layer Characterization and Fracture Behavior of Laser-Welded Copper/Aluminum Metal Joints, Mater. Des., 2014, 58, p 357–362.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Innovative Energy Conservation Technology Innovation Program of New Energy and Industrial Technology Development Organization (NEDO) (Grant Number 19101868-0). We would also like to thank Editage (wwweditage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Nishikawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishikawa, S., Arayashiki, T., Takahashi, M. et al. Effect of Interfacial Microstructure on Mechanical Properties of Cold Pressure-Welded Al-Cu Joints Subjected to Annealing. J. of Materi Eng and Perform 30, 7386–7396 (2021). https://doi.org/10.1007/s11665-021-05970-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05970-3

Keywords

Navigation