Skip to main content

Advertisement

Log in

Nitrogen Incorporation into Ta Thin Films Deposited over Ti6Al4V: A Detailed Material and Surface Characterization

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ti6Al4V is widely used as a metallic biomaterial and in cutting-edge fields of biomedicine that must comply with emerging technological demands such as smart wearable pieces and implantable electronic devices. In this work, we perform a duplex process where pure tantalum thin films were deposited over Ti6Al4V substrate by magnetron sputtering followed by a post-treatment consisting of plasma nitriding. Plasma nitrided Ta films exhibit improvement in wettability and increased roughness, both of which are attributed to the texturing of the surfaces. The RBS results plus SIMRA simulations allow to analyze the thin film stoichiometry and thickness variation according to the processes carried out. XRD spectra provided information of the nitrogen incorporation in tantalum, as a Ta containing phase was observed in plasma nitrided films. In summary, nitrogen-enriched tantalum films tailored by duplex process of sputtering/plasma nitriding fulfills important characteristics of quality coatings, synergistically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Tüten, D. Canadinc, A. Motallebzadeh, and B. Bal, Microstructure and Tribological Properties of TiTaHfNbZr High Entropy Alloy Coatings Deposited on Ti-6Al-4V Substrates, Intermetallics, 2019, 105, p 99–106

    Article  Google Scholar 

  2. J.J. Jacobs, A.K. Skipor, L.M. Patterson, N.J. Hallab, W.G. Paprosky, J. Black, and J.O. Galante, Metal Release in Patients Who Have Had a Primary Total Hip Arthroplasty: A Prospective, Controlled, Longitudinal Study, J. Bone Jt. Surg. Ser. A, 1998, 80(10), p 1447–1458

    Article  CAS  Google Scholar 

  3. B.D. Beake and T.W. Liskiewicz, Comparison of Nano-Fretting and Nano-Scratch Tests on Biomedical Materials, Tribol. Int., 2013, 63, p 123–131

    Article  CAS  Google Scholar 

  4. C.P. Fontoura, M.M. Rodrigues, C.S.C. Garcia, K. Dos Santos Souza, J.A.P. Henriques, J.E. Zorzi, M. Roesch-Ely, and C. Aguzzoli, Hollow Cathode Plasma Nitriding of Medical Grade Ti6Al4V: A Comprehensive Study, J. Biomater. Appl., 2020, 35(3), p 353–370

    Article  CAS  Google Scholar 

  5. X. Yu, L. Tan, H. Yang, and K. Yang, Surface Characterization and Preparation of Ta Coating on Ti6Al4V Alloy, J. Alloys Compd., 2015, 644, p 698–703

    Article  CAS  Google Scholar 

  6. O. Unal, E. Maleki, and R. Varol, Effect of Severe Shot Peening and Ultra-Low Temperature Plasma Nitriding on Ti-6Al-4V Alloy, Vacuum, 2018, 150, p 69–78

    Article  CAS  Google Scholar 

  7. M.P. Fiorucci, A.J. López, and A. Ramil, Surface Modification of Ti6Al4V by Nanosecond Laser Ablation for Biomedical Applications, J. Phys. Conf. Ser., 2015, 605(1), p 012022

    Article  Google Scholar 

  8. W.L. Lo, S.Y. Hsu, Y.C. Lin, S.Y. Tsai, Y.T. Lai, and J.G. Duh, Improvement of High Entropy Alloy Nitride Coatings (AlCrNbSiTiMo)N on Mechanical and High Temperature Tribological Properties by Tuning Substrate Bias, Surf. Coat. Technol., 2020, 401, p 126247

    Article  CAS  Google Scholar 

  9. A.H. Ramezani, M.R. Hantehezadeh, M. Ghoranneviss, and E. Darabi, Corrosion Resistance Behavior of Nitrogen Ion-Implanted in Tantalum, Appl. Phys. A Mater. Sci. Process., 2016, 122(3), p 179

    Article  Google Scholar 

  10. X.M. Zhang, Y. Li, Y.X. Gu, C.N. Zhang, H.C. Lai, and J.Y. Shi, Ta-Coated Titanium Surface with Superior Bacteriostasis and Osseointegration, Int. J. Nanomed., 2019, 14, p 8693–8706

    Article  CAS  Google Scholar 

  11. A. Maho, S. Linden, C. Arnould, S. Detriche, J. Delhalle, and Z. Mekhalif, Tantalum Oxide/Carbon Nanotubes Composite Coatings on Titanium, and Their Functionalization with Organophosphonic Molecular Films: A High Quality Scaffold for Hydroxyapatite Growth, J. Colloid Interface Sci., 2012, 371(1), p 150–158

    Article  CAS  Google Scholar 

  12. Y. Zhang, Y. Zheng, Y. Li, L. Wang, Y. Bai, Q. Zhao, X. Xiong, Y. Cheng, Z. Tang, Y. Deng, and S. Wei, Tantalum Nitride-Decorated Titanium with Enhanced Resistance to Microbiologically Induced Corrosion and Mechanical Property for Dental Application, PLoS ONE, 2015, 10(6), p e0130774

    Article  Google Scholar 

  13. R. Li, Y. Qin, G. Liu, C. Zhang, H. Liang, Y. Qing, Y. Zhang, and K. Zhang, Tantalum Nitride Coatings Prepared by Magnetron Sputtering to Improve the Bioactivity and Osteogenic Activity for Titanium Alloy Implants, RSC Adv. R. Soc. Chem., 2017, 7(87), p 55408–55417

    Article  CAS  Google Scholar 

  14. H.B. Nie, S.Y. Xu, S.J. Wang, L.P. You, Z. Yang, C.K. Ong, J. Li, and T.Y.F. Liew, Structural and Electrical Properties of Tantalum Nitride Thin Films Fabricated by Using Reactive Radio-Frequency Magnetron Sputtering, Appl. Phys. A Mater. Sci. Process., 2001, 73(2), p 229–236

    Article  CAS  Google Scholar 

  15. J. An and Q.Y. Zhang, Structure, Hardness and Tribological Properties of Nanolayered TiN/TaN Multilayer Coatings, Mater. Charact., 2007, 58(5), p 439–446

    Article  CAS  Google Scholar 

  16. S.-I. Baik and Y.-W. Kim, Microstructural Evolution of Tantalum Nitride Thin Films Synthesized by Inductively Coupled Plasma Sputtering, Appl. Microsc, 2020, 50(1), p 1–10

    Article  Google Scholar 

  17. J. Nazon, J. Sarradin, V. Flaud, J.C. Tedenac and N. Fréty, Effects of Processing Parameters on the Properties of Tantalum Nitride Thin Films Deposited by Reactive Sputtering, J. Alloys Compd., 2008, 464(1–2), p 526–531

    Article  CAS  Google Scholar 

  18. D.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, William Andrew, Norwich, 2007

    Google Scholar 

  19. W.-F. Wu, K.-L. Ou, C.-P. Chou, and C.-C. Wu, Effects of Nitrogen Plasma Treatment on Tantalum Diffusion Barriers in Copper Metallization, J. Electrochem. Soc., 2003, 150(2), p G83

    Article  CAS  Google Scholar 

  20. C. Wang, T. Hisatomi, T. Minegishi, M. Nakabayashi, N. Shibata, M. Katayama, and K. Domen, Thin Film Transfer for the Fabrication of Tantalum Nitride Photoelectrodes with Controllable Layered Structures for Water Splitting, Chem. Sci. R. Soc. Chem., 2016, 7(9), p 5821–5826

    CAS  Google Scholar 

  21. A.H. Ramezani, S. Hoseinzadeh, and Z. Ebrahiminejad, Structural and Mechanical Properties of Tantalum Thin Films Ected by Nitrogen Ion Implantation, Mod. Phys. Lett. B, 2020, 34(15), p 2150008

    Article  Google Scholar 

  22. A.C. Hee, Y. Zhao, S.S. Jamali, A. Bendavid, P.J. Martin, and H. Guo, Characterization of Tantalum and Tantalum Nitride Films on Ti6Al4V Substrate Prepared by Filtered Cathodic Vacuum Arc Deposition for Biomedical Applications, Surf. Coat. Technol., 2019, 365, p 24–32

    Article  CAS  Google Scholar 

  23. A.H. Ramezani, S. Hoseinzadeh, and A. Bahari, The Effects of Nitrogen on Structure, Morphology and Electrical Resistance of Tantalum by Ion Implantation Method, J. Inorg. Organomet. Polym. Mater., 2018, 28(3), p 847–853

    Article  CAS  Google Scholar 

  24. M. Peikert, E. Wieser, J.V. Borany, H. Reuther, K. Dittmar, and D. Gehre, Incorporation of Nitrogen in Thin Tantalum Films Using Plasma Immersion Ion Implantation, Surf. Coat. Technol., 2005, 200(7), p 2253–2259

    Article  CAS  Google Scholar 

  25. M. Stavrev, D. Fischer, C. Wenzel, K. Drescher, and N. Mattern, Crystallographic and Morphological Characterization of Reactively Sputtered Ta, Ta-N and Ta-N-O Thin Films, Thin Solid Films, 1997, 307(1–2), p 79–88

    Article  CAS  Google Scholar 

  26. H.C.M. Knoops, L. Baggetto, E. Langereis, M.C.M. van de Sanden, J.H. Klootwijk, F. Roozeboom, R.A.H. Niessen, P.H.L. Notten, and W.M.M. Kessels, Deposition of TiN and TaN by Remote Plasma ALD for Cu and Li Diffusion Barrier Applications, J. Electrochem. Soc., 2008, 155(12), p G287

    Article  CAS  Google Scholar 

  27. M. Alishahi, F. Mahboubi, S.M. Mousavi Khoie, M. Aparicio, E. Lopez-Elvira, J. Méndez, and R. Gago, Structural Properties and Corrosion Resistance of Tantalum Nitride Coatings Produced by Reactive DC Magnetron Sputtering, RSC Adv., 2016, 6(92), p 89061–89072

    Article  CAS  Google Scholar 

  28. M. Popović, M. Novaković, and N. Bibić, Structural Characterization of TiN Coatings on Si Substrates Irradiated with Ar Ions, Mater. Charact., 2009, 60(12), p 1463–1470

    Article  Google Scholar 

  29. F. Fernández-Lima, E. Vigil, I. Zumeta, F.L. Freire, R. Prioli, and E. Pedrero, Rutherford Backscattering Spectrometry Analysis of TiO2 Thin Films, Mater. Charact., 2003, 50(2–3), p 155–160

    Article  Google Scholar 

  30. H.P. Quiroz, M. Manso-Silván, A. Dussan, C. Busó-Rogero, P. Prieto, and F. Mesa, TiO2 and Co Multilayer Thin Films via DC Magnetron Sputtering at Room Temperature: Interface Properties, Mater. Charact., 2020, 163, p 110293

    Article  CAS  Google Scholar 

  31. M. Mayer, SIMNRA, a Simulation Program for the Analysis of NRA, RBS and ERDA, AIP Conference Proceedings, 2008, p 541–544

  32. N.W.M. Ritchie, Getting Started with NIST DTSA-II, Microsc. Today, 2011, 19(1), p 26–31

    Article  CAS  Google Scholar 

  33. N.W.M. Ritchie, Spectrum Simulation in DTSA-II, Microsc. Microanal., 2009, 15(5), p 454–468

    Article  CAS  Google Scholar 

  34. M.M. Rodrigues, C.P. Fontoura, A.E. Dotta Maddalozzo, L.M. Leidens, H.G. Quevedo, K. dos Santos Souza, J. da Silva Crespo, A.F. Michels, C.A. Figueroa, and C. Aguzzoli, Ti, Zr and Ta Coated UHMWPE Aiming Surface Improvement for Biomedical Purposes, Compos. Part B Eng., 2020, 189, p 107909

    Article  CAS  Google Scholar 

  35. X. Jia, Wettability of Rough Polymer, Metal and Oxide Surfaces as Well as of Composite Surfaces, J. Adhes. Sci. Technol., 2008, 22(15), p 1893–1905

    Article  CAS  Google Scholar 

  36. A. Žemaitis, A. Mimidis, A. Papadopoulos, P. Gečys, G. Račiukaitis, E. Stratakis, and M. Gedvilas, Controlling the Wettability of Stainless Steel from Highly-Hydrophilic to Super-Hydrophobic by Femtosecond Laser-Induced Ripples and Nanospikes, RSC Adv., 2020, 10(62), p 37956–37961

    Article  Google Scholar 

  37. D. Xiong, Z. Gao, and Z. Jin, Friction and Wear Properties of UHMWPE against Ion Implanted Titanium Alloy, Surf. Coat. Technol., 2007, 201(15), p 6847–6850

    Article  CAS  Google Scholar 

  38. M. Wang, Y. Wu, S. Lu, T. Chen, Y. Zhao, H. Chen, and Z. Tang, Fabrication and Characterization of Selective Laser Melting Printed Ti-6Al-4V Alloys Subjected to Heat Treatment for Customized Implants Design, Prog. Nat. Sci. Mater. Int., 2016, 26(6), p 671–677

    Article  CAS  Google Scholar 

  39. Z. Ding, Y. Wang, Q. Zhou, Z. Ding, Y. Wu, Y. Zhu, W. Shi, and Q. He, The Preparation and Properties of Multilayer Cu-MTa2O5 Composite Coatings on Ti6Al4V for Biomedical Applications, Nanomaterials, 2019, 9(10), p 1498

    Article  CAS  Google Scholar 

  40. R. Gabor, M. Doubkova, S. Gorosova, K. Malanik, M. Vandrovcova, L. Cvrcek, K. Drobikova, K. Mamulova Kutlakova, and L. Bacakova, Preparation of Highly Wettable Coatings on Ti-6Al-4V ELI Alloy for Traumatological Implants Using Micro-Arc Oxidation in an Alkaline Electrolyte, Sci. Rep., 2020, 10(1), p 19780

    Article  CAS  Google Scholar 

  41. M. Echeverry-Rendón, O. Galvis, R. Aguirre, S. Robledo, J.G. Castaño, and F. Echeverría, Modification of Titanium Alloys Surface Properties by Plasma Electrolytic Oxidation (PEO) and Influence on Biological Response, J. Mater. Sci. Mater. Med., 2017, 28(11), p 1–14

    Article  Google Scholar 

  42. R. Haarindraprasad, U. Hashim, S.C.B. Gopinath, M. Kashif, P. Veeradasan, S.R. Balakrishnan, K.L. Foo, P. Poopalan, and Y.K. Mishra, Low Temperature Annealed Zinc Oxide Nanostructured Thin Film-Based Transducers: Characterization for Sensing Applications, PLoS ONE, 2015, 10(7), p e0132755

    Article  CAS  Google Scholar 

  43. S.V. Kamat, V. Puri, and R.K. Puri, The Effect of Film Thickness on the Structural Properties of Vacuum Evaporated Poly(3-Methylthiophene) Thin Films, ISRN Polym. Sci., 2012, 2012, p 1–8

    Article  Google Scholar 

  44. M. Braun, Surface Analysis by RBS and NRA, Vacuum, 1984, 34(12), p 1045–1052

    Article  CAS  Google Scholar 

  45. D. Krecar, M. Rosner, M. Draxler, P. Bauer, and H. Hutter, Low Energy RBS and SIMS Analysis of the SiGe Quantum Well, Appl. Surf. Sci., 2005, 252(1 SPEC. ISS.), p 123–126

    Article  CAS  Google Scholar 

  46. H. Zhang, N. Guo, Y. Zhang, X. Ma, D. Gao, Q. Wang, Q. Lei, W. Zhang, and H. Shen, Measurement of Helium in ICF Pellet with External RBS System in Fudan University, Nucl. Instrum Methods Phys. Res. Sect B Beam Interact. Mater. Atoms, 2019, 450, p 337–341

    Article  CAS  Google Scholar 

  47. R.M. Nagabharana, N. Kiran, P. Guha, B. Sundaravel, and U.M. Bhatta, Structural Characterization of Magnetron Sputtered ZnO Thin Films on Si(100) Using RBS Scanning and High Resolution Transmission Electron Microscopy Methods, Surf Interfaces, 2019, 15, p 239–243

    Article  CAS  Google Scholar 

  48. I. Burducea, A.O. Mateescu, G. Mateescu, C. Ionescu, M. Straticiuc, L.S. Craciun, C.P. Lungu, G.O. Pompilian, and P.M. Racolt, AFM, RBS and Tribological Properties of WC/WS2 Nanostructures after 1.5 MeV Nb+ Implantation, Nucl. Instrum Methods Phys. Res. Sect B Beam Interact. Mater. Atoms, 2019, 450, p 357–360

    Article  CAS  Google Scholar 

  49. S. Pinilla, T. Campo, J.M. Sanz, F. Márquez, and C. Morant, Highly Ordered Metal-Coated Alumina Membranes: Synthesis and RBS Characterization, Surf. Coatings Technol., 2019, 377, p 124883

    Article  CAS  Google Scholar 

  50. M.S. Hussain, M. Mehmood, J. Ahmad, M.T. Tanvir, A.F. Khan, T. Ali, and A. Mahmood, RBS Depth Profiling and Optical Characterization of Multilayers of TiO 2 (20 Nm) and Ge (15 Nm), Mater. Chem. Phys., 2013, 139(1), p 17–26

    Article  CAS  Google Scholar 

  51. C.D. Nascimento, E.G. Souza, C. Aguzzoli, and R.L. Cruz, Effects of Oxygen on the Resistivity in Au Thin Films with Ti-Al Adhesion Layer, J. Vac. Sci. Technol. B, 2019, 37(5), p 052202

    Article  Google Scholar 

  52. R.E. Trentin, A.L. Bandeira, F. Cemin, M. Morales, C.L.G. Amorim, C. Aguzzoli, F. Alvarez, I.J.R. Baumvol, M.C.M. Farias, and C.A. Figueroa, Physicochemical, Structural, Mechanical, and Tribological Characteristics of Si3N4-MoS2 Thin Films Deposited by Reactive Magnetron Sputtering, Surf. Coat. Technol., 2014, 254, p 327–332

    Article  CAS  Google Scholar 

  53. H. Schneidewind, T. Schüler, K.K. Strelau, K. Weber, D. Cialla, M. Diegel, R. Mattheis, A. Berger, R. Möller, and J. Popp, The Morphology of Silver Nanoparticles Prepared by Enzyme-Induced Reduction, Beilstein J. Nanotechnol., 2012, 3(1), p 404–414

    Article  Google Scholar 

  54. M. Ueda, G.F. Gomes, K.G. Kostov, H. Reuther, C.M. Lepienski, P.C. Soares, O. Takai, and M.M. Silva, Results from Experiments on Hybrid Plasma Immersion Ion Implantation/Nitriding Processing of Materials, Brazilian J. Phys., 2004, 34(4 B), p 1632–1637

    Article  CAS  Google Scholar 

  55. E. Roliński, J. Arner, and G. Sharp, Negative Effects of Reactive Sputtering in an Industrial Plasma Nitriding, J. Mater. Eng. Perform., 2005, 14(3), p 343–350

    Article  Google Scholar 

  56. Y. Seo, S. Lee, S.H.C. Baek, W.S. Hwang, H.Y. Yu, S.H. Lee, and B.J. Cho, The Mechanism of Schottky Barrier Modulation of Tantalum Nitride/Ge Contacts, IEEE Electron Device Lett., 2015, 36(10), p 997–1000

    Article  CAS  Google Scholar 

  57. J. Cheng, J. Xu, L.L. Liu, and S. Jiang, Electrochemical Corrosion Behavior of Ta2n Nanoceramic Coating in Simulated Body Fluid, Materials (Basel), 2016, 9(9), p 772

    Article  Google Scholar 

  58. L. Li, H. Hei, Y. Wang, K. Zheng, Y. Ma, J. Gao, B. Zhou, Z. He, J. Zong, S. Yu, and B. Tang, Microstructure and Properties of Ta Coatings on the 3Y-TZP Ceramic Fabricated by Plasma Alloying Technique, J. Alloys Compd., 2019, 805, p 1135–1143

    Article  CAS  Google Scholar 

  59. A. Ramos-Masana and C. Colominas, Evaluation of DC-MS and HiPIMS TiB2 and TaN Coatings as Diffusion Barriers against Molten Aluminum: An Insight into the Wetting Mechanism, Surf. Coat. Technol., 2019, 375, p 171–181

    Article  CAS  Google Scholar 

  60. K.L. Ou, W.F. Wu, C.P. Chou, S.Y. Chiou, and C.C. Wu, Improved TaN Barrier Layer against Cu Diffusion by Formation of an Amorphous Layer Using Plasma Treatment, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 2002, 20(5), p 2154–2161

    Article  CAS  Google Scholar 

  61. H.C. Chung and C.P. Liu, Effect of Crystallinity and Preferred Orientation of Ta2N Films on Diffusion Barrier Properties for Copper Metallization, Surf. Coat. Technol., 2006, 200(10 SPEC. ISS.), p 3122–3126

    Article  CAS  Google Scholar 

  62. J.C. Tsao, C.P. Liu, H.C. Fang, and Y.L. Wang, How Tantalum Proceeds Phase Change on Tantalum Nitride Underlayer with Sequential Ar Plasma Treatment, Mater. Chem. Phys., 2013, 137(3), p 689–693

    Article  CAS  Google Scholar 

  63. S.M. Aouadi and M. Debessai, Optical Properties of Tantalum Nitride Films Fabricated Using Reactive Unbalanced Magnetron Sputtering, J. Vac. Sci. Technol. A Vac. Surf. Films, 2004, 22(5), p 1975–1979

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the following divisions at the University of Caxias do Sul: Graduate Program in Materials Science and Engineering (PPGMAT), the Biotechnology Institute (IB), and Microscopy Center (LCMic), and also the Ion Implantation Laboratory at the Institute of Physics (IF) at the Federal University of Rio Grande do Sul. CPF and AEDM are CAPES fellows. MMR, JSC, CAF, and CA are CNPq fellows. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code—001, and INCT-INES (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa Machado Rodrigues.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Surface Engineering. The issue was organized by Dr. M. K. Banerjee, Malaviya National Institute of Technology, Jaipur.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padilha Fontoura, C., Dotta Maddalozzo, A.E., Machado Rodrigues, M. et al. Nitrogen Incorporation into Ta Thin Films Deposited over Ti6Al4V: A Detailed Material and Surface Characterization. J. of Materi Eng and Perform 30, 4094–4102 (2021). https://doi.org/10.1007/s11665-021-05879-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05879-x

Keywords

Navigation