Skip to main content
Log in

The Role of the Direct Current Electric Field in Enhancing the Protective Rust Layer of Weathering Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study aims to generate a protective rust layer for weathering steel (WS) via controlling the direct current electric field (DCEF). The results show that the DCEF accelerates the corrosion kinetics for WS which can be segmented into three stages: the corrosion rate sharp increase stage, the corrosion rate reduction stage, and the corrosion rate tends to be stable stage. For the corrosion process, the DCEF promotes the migration of ions and shifts the electrode potential negatively to accelerate the corrosion reaction in the initial stage. Meanwhile, the DCEF promotes the growth of γ-FeOOH and inhibits the transition of γ-FeOOH to α-FeOOH. When the DCEF is removed in a certain corrosion process, the corrosion rate rapidly steps into the corrosion rate reduction stage to generate a protective rust layer which develops a new green pre-rusting method for WS engineering application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. M. Morcillo, C. Chico, I. Díaz et al., Atmospheric Corrosion Data of Weathering Steels. A Review, Corros. Sci., 2013, 77, p 6–24. https://doi.org/10.1016/j.corsci.2013.08.021

    Article  CAS  Google Scholar 

  2. M. Morcillo, I. Díaz, H. Cano, B. Chico and D. de la Fuente, Atmospheric Corrosion of Weathering Steels. Overview for Engineers. Part II: Testing, Inspection, Maintenance, Constr. Build. Mater., 2019, 222, p 750–765. https://doi.org/10.1016/j.conbuildmat.2019.06.155

    Article  Google Scholar 

  3. M. Morcillo, I. Díaz, H. Cano, B. Chico and D. de la Fuente, Atmospheric Corrosion of Weathering Steels. Overview for Engineers. Part I: Basic Concepts, Constr. Build. Mater., 2019, 213, p 723–737. https://doi.org/10.1016/j.conbuildmat.2019.03.334

    Article  Google Scholar 

  4. Y.Y. Chen, H.J. Tzeng, L.I. Wei and H.C. Shih, RETRACTED: Mechanical Properties and Corrosion Resistance of Low-Alloy Steels in Atmospheric Conditions Containing Chloride, Mater. Sci. Eng. A, 2005, 398, p 47–59. https://doi.org/10.1016/j.msea.2005.02.064

    Article  CAS  Google Scholar 

  5. V. Figà, M.P. Casaletto, A. Privitera et al., Inhibition of Cor-Ten Steel Corrosion by " Green " Extracts of Brassica campestris, Corros. Sci., 2018, 136, p 91–105. https://doi.org/10.1016/j.corsci.2018.02.059

    Article  CAS  Google Scholar 

  6. C. Chiavari, E. Bernardi, C. Martini, F. Passarini, A. Motori and M.C. Bignozzi, Atmospheric Corrosion of Cor-Ten Steel with Different Surface Finish: Accelerated Ageing and metal Release, Mater. Chem. Phys., 2012, 136, p 477–486. https://doi.org/10.1016/j.matchemphys.2012.07.014

    Article  CAS  Google Scholar 

  7. M. Mostafavi, On Weathering: The Life of Buildings in Time, 1993.

  8. J. McConnell, H.W. Shenton, D.R. Mertz and D. Kaur, National Review on Use and Performance of Uncoated Weathering Steel Highway Bridges, J. Bridge Eng., 2014 https://doi.org/10.1061/(asce)be.1943-5592.0000580

    Article  Google Scholar 

  9. J. McConnell, H.W. Shenton, D. Mertz and D. Kaur, Performance of Uncoated Weathering Steel Highway Bridges Throughout the United States, Transp. Res. Rec. J. Transp. Res. Board, 2014, 2406, p 61–67. https://doi.org/10.3141/2406-07

    Article  Google Scholar 

  10. T. Kamimura, T. Doi, K. Kashima et al., Investigation of Rust Layer Formed on Weathering Steel Coated with a Surface Treatment Promoting Protective Rust Formation, J. Jpn. Soc., 2007, 56(11), p 1035–1041.

    CAS  Google Scholar 

  11. N. Dai, J. Zhang, Q. Chen, B. Yi, F. Cao and J. Zhang, Effect of the Direct Current Electric Field on the Initial Corrosion of Steel in Simulated Industrial Atmospheric Environment, Corros. Sci., 2015, 99, p 295–303. https://doi.org/10.1016/j.corsci.2015.07.029

    Article  CAS  Google Scholar 

  12. T. Wang, T. Li, J. Xu, Z. Chen, H. Xie, T. Xiao and J. Zhu, Real Time Imaging on Dendrite Morphology Evolution During Alloy Solidification Under Electric Field, Sci. Sin. Phys. Mech. Astron., 2010, 41, p 23–28. https://doi.org/10.1360/132010-734

    Article  Google Scholar 

  13. X. Zhang, J. Zhang, Q. Chen, N. Dai, Q. Ni, L.-C. Zhang, F. Cao and J. Zhang, Effect of Direct Current Electric Field Intensity and Electrolyte Layer Thickness on Oxygen Reduction in Simulated Atmospheric Environment, Corros. Sci., 2019, 148, p 206–212. https://doi.org/10.1016/j.corsci.2018.12.013

    Article  CAS  Google Scholar 

  14. Y.S. Choi, J.J. Shim and J.G. Kim, Effects of Cr, Cu, Ni and Ca on the Corrosion Behavior of Low Carbon Steel in Synthetic Tap Water, J. Alloys Compd., 2005, 391, p 162–169. https://doi.org/10.1016/j.jallcom.2004.07.081

    Article  CAS  Google Scholar 

  15. Y. Zhou, J. Chen, Y. Xu and Z. Liu, Effects of Cr, Ni and Cu on the Corrosion Behavior of Low Carbon Microalloying Steel in a Cl Containing Environment, J. Mater. Sci. Technol., 2013, 29, p 168–174. https://doi.org/10.1016/j.jmst.2012.12.013

    Article  CAS  Google Scholar 

  16. T. Nishimura, H. Katayama, K. Noda and T. Kodama, Effect of Co and Ni on the Corrosion Behavior of Low Alloy Steels in Wet/Dry Environments, Corros. Sci., 2000, 42, p 1611–1621. https://doi.org/10.1016/S0010-938X(00)00018-4

    Article  CAS  Google Scholar 

  17. ASTM, ASTM G1-03, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, 2003

  18. J. Feng, J.C. Chen, B. Xiao, C.T. Zhou, Z.J. Hong and R. Zhou, Stability, Thermodynamic and Mechanical Properties of the Compounds in the Ag–Sn–O System, Phys. B, 2009, 404, p 2461–2467. https://doi.org/10.1016/j.physb.2009.05.004

    Article  CAS  Google Scholar 

  19. J.F. Ewing, The Crystal Structure of Lepidocrocite, J. Chem. Phys., 1935, 3, p 420–424.

    Article  CAS  Google Scholar 

  20. H. Yang, R. Lu, R.T. Downs and G. Costin, Goethite, α-FeO(OH), from Single-Crystal Data, Acta Crystallogr. A, 2010, 62, p i250–i252.

    Google Scholar 

  21. S. Vaynman, R.S. Guico and M.E. Fine, Estimation of Atmospheric Corrosion of high-Strength, Low-Alloy Steels, Metall. Mater. Trans. A, 1997, 28(5), p 1274–1276.

    Article  Google Scholar 

  22. H.E. Townsend, Effects of Alloying Elements on the Corrosion of Steel in Industrial Atmospheres, Corros. Sci., 2001, 57(6), p 497–501.

    Article  CAS  Google Scholar 

  23. Z.L. Li, K. Xiao, C. Dong, X. Cheng, W. Xue and W. Yu, Atmospheric Corrosion Behavior of Low-Alloy Steels in a Tropical Marine Environment, J. Iron Steel Res. Int., 2019, 26, p 1315–1328. https://doi.org/10.1007/s42243-019-00316-9

    Article  CAS  Google Scholar 

  24. L. Hao, S. Zhang, J. Dong and W. Ke, Atmospheric Corrosion Resistance of MnCuP Weathering Steel in Simulated Environments, Corros. Sci., 2011, 53, p 4187–4192. https://doi.org/10.1016/j.corsci.2011.08.028

    Article  CAS  Google Scholar 

  25. R.A. Antunes, I. Costa and D.L.A. de Faria, Characterization of Corrosion Products Formed on Steels in the First Months of Atmospheric Exposure, Mater. Res., 2003, 6(3), p 403–408.

    Article  CAS  Google Scholar 

  26. P. Klomjit, M. Omoda, D. Mizuno, N. Ishikawa, N. Palsson, W. Pongsaksawad and E. Viyanit, Characterization of Rust Formed on Structural Carbon and Weathering Steels Exposed to Tropical Climate of Thailand, Corrosion, 2019, 75, p 960–972. https://doi.org/10.5006/3139

    Article  CAS  Google Scholar 

  27. B. Liu, X. Mu, Y. Yang, L. Hao, X. Ding, J. Dong, Z. Zhang, H. Hou and W. Ke, Effect of Tin Addition on Corrosion Behavior of a Low-Alloy Steel in Simulated Costal-Industrial Atmosphere, J. Mater. Sci. Technol., 2019, 35, p 1228–1239.

    Article  Google Scholar 

  28. K. Asami and M. Kikuchi, In-Depth Distribution of Rusts on a Plain Carbon Steel and Weathering Steels Exposed to Coastal–Industrial Atmosphere for 17 Years, Corros. Sci., 2003, 45, p 2671–2688. https://doi.org/10.1016/s0010-938x(03)00070-2

    Article  CAS  Google Scholar 

  29. Y. Li and J. Xu, Is Niobium More Corrosion-Resistant Than Commercially Pure Titanium in Fluoride-Containing Artificial Saliva?, Electrochim. Acta, 2017, 233, p 151–166.

    Article  CAS  Google Scholar 

  30. R. Kelly, J. Scully, D. Shoesmith and R. Buchheit, Electrochemical Thermodynamics and Kinetics of Relevance to Corrosion, CRC Press, Boca Raton, 2002.

    Book  Google Scholar 

  31. F. Mansfeld, Tafel Slopes and Corrosion Rates Obtained in the Pre-Tafel Region of Polarization Curves, Corros. Sci., 2005, 47, p 3178–3186. https://doi.org/10.1016/j.corsci.2005.04.012

    Article  CAS  Google Scholar 

  32. E. McCafferty, Validation of Corrosion Rates Measured by the Tafel Extrapolation Method, Corros. Sci., 2005, 47, p 3202–3215. https://doi.org/10.1016/j.corsci.2005.05.046

    Article  CAS  Google Scholar 

  33. Y. Ma, Y. Li and F. Wang, Corrosion of Low Carbon Steel in Atmospheric Environments of Different Chloride Content, Corros. Sci., 2009, 51, p 997–1006. https://doi.org/10.1016/j.corsci.2009.02.009

    Article  CAS  Google Scholar 

  34. Y. Ma, Y. Li and F. Wang, Weatherability of 09CuPCrNi Steel in a Tropical Marine Environment, Corros. Sci., 2009, 51, p 1725–1732. https://doi.org/10.1016/j.corsci.2009.04.024

    Article  CAS  Google Scholar 

  35. D.G. Li, J.D. Wang, D.R. Chen and P. Liang, Influences of pH Value, Temperature, Chloride Ions and Sulfide Ions on The Corrosion Behaviors of 316L Stainless Steel in the Simulated Cathodic Environment of Proton Exchange Membrane Fuel Cell, J. Power Sources, 2014, 272, p 448–456.

    Article  CAS  Google Scholar 

  36. A. Nishikata, Y. Ichihara and T. Tsuru, An Application of Electrochemical Impedance Spectroscopy to Atmospheric Corrosion Study, Corros. Sci., 1995, 37, p 897–911.

    Article  CAS  Google Scholar 

  37. H. Li, H. Yu, T. Zhou, B. Yin, S. Yin and Y. Zhang, Effect of Tin on the Corrosion Behavior of Sea-Water Corrosion-Resisting Steel, Mater. Des., 2015, 84, p 1–9.

    Article  CAS  Google Scholar 

  38. X. Yuan, J. Zhang, Q. Chen, T. Tan and X. Ma, Electrochemical Process of Zn Electrode Covered with Thin Electrolyte Layer Under External Electric Field, Corros. Sci. Protect. Technol., 2014, 26, p 197–204.

    Article  CAS  Google Scholar 

  39. H. Huang, Z. Pan, X. Guo and Y. Qiu, Effect of an Alternating Electric Field on the Atmospheric Corrosion Behaviour of Copper Under a Thin Electrolyte Layer, Corros. Sci., 2013, 75, p 100–105.

    Article  CAS  Google Scholar 

  40. X. Liao, F. Cao, L. Zheng, W. Liu, A. Chen, J. Zhang and C. Cao, Corrosion Behaviour of Copper Under Chloride-Containing Thin Electrolyte Layer, Corros. Sci., 2011, 53, p 3289–3298.

    Article  CAS  Google Scholar 

  41. W. Liu, J. Tang, B. Huang and Y. Du, Electric Field Enhanced Crystallization of Amorphous Fe86Zr7B6Cu1 Alloy, J. Alloys Compd., 2006, 420, p 171–174. https://doi.org/10.1016/j.jallcom.2005.10.045

    Article  CAS  Google Scholar 

  42. K. Sugita, N. Matsuoka, M. Mizuno and H. Araki, Vacancy Formation Enthalpy in CoCrFeMnNi High-Entropy Alloy, Scr. Mater., 2020, 176, p 32–35. https://doi.org/10.1016/j.scriptamat.2019.09.033

    Article  CAS  Google Scholar 

  43. N. Behardien-Peters, F. Davidson, T. Kotze and C. Trauernicht, P13. Correlation Between DAP Meter Readings and Skin Doses for Barium Swallows, Phys. Med., 2016 https://doi.org/10.1016/j.ejmp.2016.07.080

    Article  Google Scholar 

  44. K. Hashimoto and T. Misawa, The Solubility of γ-FeOOH in Perchloric Acid at 25 °C, Corros. Sci., 1973, 13, p 229–231. https://doi.org/10.1016/0010-938X(73)90016-4

    Article  CAS  Google Scholar 

  45. W. Wu, X. Cheng, J. Zhao and X. Li, Benefit of the Corrosion Product Film Formed on a New Weathering Steel Containing 3% Nickel Under Marine Atmosphere in Maldives, Corros. Sci., 2020 https://doi.org/10.1016/j.corsci.2019.108416

    Article  Google Scholar 

  46. M. Yamashita, H. Konishi, T. Kozakura, J. Mizuki and H. Uchida, In Situ Observation of Initial Rust Formation Process on Carbon Steel Under Na2SO4 and NaCl Solution Films with Wet/Dry Cycles Using Synchrotron Radiation X-rays, Corros. Sci., 2005, 47, p 2492–2498. https://doi.org/10.1016/j.corsci.2004.10.021

    Article  CAS  Google Scholar 

  47. W. Chen, L. Hao, J. Dong and W. Ke, Effect of Sulphur Dioxide on the Corrosion of a Low Alloy Steel in Simulated Coastal Industrial Atmosphere, Corros. Sci., 2014, 83, p 155–163. https://doi.org/10.1016/j.corsci.2014.02.010

    Article  CAS  Google Scholar 

  48. A. Jenifer, F. La, C. Belén, S. Joaquín, D. Iván and M. Manuel, Marine Atmospheric Corrosion of Carbon Steel: A Review, Materials, 2017, 10, p 406.

    Article  Google Scholar 

  49. A. Gullman, Mössbauer and X-ray Diffraction Phase Analysis of Rusts from Atmospheric Test Sites with Different Environments in Sweden, Corros. Sci., 1985, 25, p 931–945.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFB0304800 and Grant No. 2017YFB0304802 for the second sub project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Dong, W., Yang, X. et al. The Role of the Direct Current Electric Field in Enhancing the Protective Rust Layer of Weathering Steel. J. of Materi Eng and Perform 30, 6309–6322 (2021). https://doi.org/10.1007/s11665-021-05855-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05855-5

Keywords

Navigation