Skip to main content
Log in

Finite Element Model Prediction of Charge Weld Behaviour in AA6082 and AA6063 Extruded Profiles

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Charge welds are unavoidable defects of the continuous extrusion process whose extension needs to be accurately predicted in order to avoid profile mechanical failures or to minimize unrequired scrap of material. The aim of this work was then to evaluate the accuracy of the charge welds FEM predictions and their applicability in the industrial field. Two different industrial cases involving A6082 and AA6063 aluminium alloys were analysed. The data of charge welds behaviours were experimentally collected, discussed and then innovatively compared to the predicted outcomes of FEM simulations performed using QForm Extrusion® software and of theoretical formulas reported in the literature. As main results, a very good numerical-experimental matching was found, with a peak discrepancy of 122 mm in terms of charge weld extent, while theoretical formulas returned a significant underestimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. N. Hashimoto, Application of Aluminum Extrusions to Automotive Parts, Kobelco Technol. Rev., 2017, 35, p 69–75.

    Google Scholar 

  2. N. Parson, J. Fourmann, J.F. Beland, Aluminum Extrusions for Automotive Crash Applications, SAE Technical Papers, 2017, March, p 1–16

  3. J. Hirsch, Automotive Trends in Aluminium - The European Perspective, Mater. Forum, 2004, 28(3), p 15–23.

    CAS  Google Scholar 

  4. H. Valberg, Extrusion Welding in Aluminium Extrusion, Int. J. Mater. Prod. Technol., 2002, 17(7), p 497–556.

    Article  Google Scholar 

  5. A.J. Den Bakker, L. Katgermanc and S. Van Der Zwaag, Analysis of the Structure and Resulting Mechanical Properties of Aluminium Ex- Trusions Containing a Charge Weld Interface, J. Mater. Process. Technol., 2016, 229, p 9–21.

    Article  Google Scholar 

  6. A.A. Ershov, V.V. Kotov, YuN. Loginov. Capabilities of QForm-Extrusion Based on an Example of the Extrusion of Complex Shapes, Metallurgist, 2012, 55(9-10), p 695-701

  7. M.B. Güner, C. Mehmetalioğlu, O.H. Çelik, M. Konar, G. Özçelik, Effect of Extrusion Parameters on Microstructural and Mechanical Properties of EN AW 6063, Light Metals 2020, A. Tomsett, Ed., Feb 23-27, 2020 (San Diego, CA, Springer: Cham, 2020), p 425-432

  8. P. Chathuranga, Case Study of Extrusion Die Design Optimization Using Innovative Cartridge Type Die, Light Metal Age, 2014, 77(5), p 20–27.

    Google Scholar 

  9. X.R. Li, W.L. Fang, D. Tang, Y.L. Sun and D.Y. Li, Numerical Simulation on Hot Extrusion Forming of Aluminum Alloy Micro-Multiport Profile, J. Plast. Eng., 2017, 24(5), p 1–6.

    Google Scholar 

  10. N. Biba, S. Stebunov and A. Lishny, Simulation of Material Flow Coupled with Die Analysis in Complex Shape Extrusion, Key Eng. Mater., 2014, 585, p 85–92.

    Article  Google Scholar 

  11. A.J. Den Bakker, L. Katgerman and S. Van Der Zwaag, Analysis of the Structure and Resulting Mechanical Properties of Aluminium Extrusions Containing a Charge Weld Interface, J. Mater. Process. Technol., 2016, 229, p 9–21.

    Article  Google Scholar 

  12. N. Nanninga, C. White and R. Dickson, Charge Weld Effects on High Cycle Fatigue Behavior of a Hollow Extruded AA6082 Profile, J. Mater. Eng. Perform., 2011, 20, p 1235–1241.

    Article  CAS  Google Scholar 

  13. M. Negozio, R. Pelaccia, L. Donati, B. Reggiani, L. Tomesani, T. Pinter, FEM Validation of front end and back end defects evolution in AA6063 and AA6082 aluminum alloys profiles, Procedia Manufacturing, Volume 47, M. Bambach, Ed., May 4-8, 2020 (Cottbus, DE), Elsevier Ltd., 2020, p 202-208

  14. B. Reggiani and L. Donati, Experimental, Numerical, and Analytical Investigations on the Charge Weld Evolution in Extruded Profiles, Int. J. Adv. Manuf. Technol., 2018, 99(5–8), p 1379–1387.

    Article  Google Scholar 

  15. B. Reggiani, T. Pinter and L. Donati, Scrap Assessment in Direct Extrusion, Int. J. Adv. Manuf. Technol., 2020, 107(5–6), p 2635–2647.

    Article  Google Scholar 

  16. S. Lou, Y. Wang, C. Liu, S. Lu, S. Liu and C. Su, Analysis and Prediction of the Billet Butt and Transverse Weld in the Continuous Extrusion Process of a Hollow Aluminum Profile, J. Mater. Eng. Perform., 2017, 26(8), p 4121–4130.

    Article  CAS  Google Scholar 

  17. C. Zhang, Y. Dong, G. Zhao, L. Chen, Experimental and numerical investigations on transverse weld of hollow aluminum profile during porthole extrusion process, Procedia Engineering, Volume 207, J. Allwood, Ed., Sept 17-22, 2017 (Cambridge, UK), Elsevier Ltd., 2017, p 1653–1658

  18. C. Zhang, Y. Dong, C. Wang, G. Zhao, L. Chen and W. Sun, Evolution of Transverse Weld During Porthole Extrusion of AA7N01 Hollow Profile, J. Mater. Process. Technol., 2017, 248(May), p 103–114.

    Article  Google Scholar 

  19. C. Zhang, G. Zhao, H. Chen, Y. Guan, H. Cai and B. Gao, Investigation on Effects of Die Orifice Layout on Three-Hole Porthole Extrusion of Aluminum Alloy 6063 Tubes, J. Mater. Eng. Perform., 2013, 22, p 1223–1232.

    Article  CAS  Google Scholar 

  20. T. Hatzenbichler and B. Buchmayr, Finite Element Method Simulation of Internal Defects in Billet-to-Billet Extrusion, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2010, 224(7), p 1029–1042.

    Article  Google Scholar 

  21. Y. Mahmoodkhani, M.A. Wells, N. Parson and W.J. Poole, Numerical Modelling of the Material Flow During Extrusion of Aluminium Alloys and Transverse Weld Formation, J. Mater. Process Technol., 2014, 214, p 688–700.

    Article  CAS  Google Scholar 

  22. P. Saha, Quality issues of hollow extrusions for aerospace applications, Proceedings of the 9th aluminum extrusion technology seminar, Volume 1, May 13-16, 2008 (Orlando, FL), ET Foundation, 2008, p 441-458

  23. C. Jowett, J. Adams, C. Daughetee, G. Lea, O.A. Huff, N. Fossl, Scrap Allocation, Proceedings of the 9th Aluminum Extrusion Technology Seminar, Volume 1, May 13-16, 2008 (Orlando, FL), ET Foundation, 2008, p 223-244.

  24. https://qform3d.com

  25. J. Donea, A. Huerta, J.P. Ponthot, A. Rodriguez-Ferran, Arbitrary Lagrangian-Eulerian methods, Encyclopedia of computational mechanics, 2004, p 413-433

  26. A. Hensel and T. Spittel, Kraft Und Arbeitsbedarf Bildsamer Formgeburgsverfahren, 1, VEB Deutscher Verlag fur Grundstoffindustrie, Auflage, Leipzig, 1978.

    Google Scholar 

  27. M. El Mehtedi, S. Spigarelli, F. Gabrielli, L. Donati, Comparison study of constitutive models in predicting the hot deformation behavior of AA6060 and AA6063 aluminium alloys, Materials Today: Proceedings, Volume 2, Issue 10, Part A, L. Donati, L. Tomesani, Eds., May 12-16, 2015 (Firenze, IT), S. Bland, 2015, p 4732–4739

  28. A. Selvaggio, T. Kloppenborg, M. Schwane, R. Hölker, A. Jäger, L. Donati, L. Tomesani, A.E. Tekkaya, Extrusion benchmark 2013 - Experimental analysis of mandrel deflection, local temperature and pressure in extrusion dies, Key Engineering Materials, Volume 585, A. E. Tekkaya, A. Jäger, Eds., May 14-18 (Milano, IT), Trans Tech Publications Ltd., 2013, p 13-22

  29. J.Q. Yu, G.Q. Zhao and L. Chen, Investigation of Interface Evolution, Microstructure and Mechanical Properties of Solid-State Bonding Seams in Hot Extrusion Process of Aluminum Alloy Profiles, J. Mater. Process. Technol., 2016, 230, p 153–166.

    Article  CAS  Google Scholar 

  30. T. Hatzenbichler, B. Buchmayr and A. Umgeher, A Numerical Sensitivity Study to Determine the Main Influence Parameters on the Back-End Defect, J. Mater. Process. Technol., 2007, 182, p 73–78.

    Article  CAS  Google Scholar 

  31. Y. Mahmoodkhani, M. Wells, N. Parson, C. Jowett and W. Poole, Modeling the Formation of Transverse Weld During Billet-on-Billet Extrusion, Materials, 2014, 7(5), p 3470–3480.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Negozio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negozio, M., Pelaccia, R., Donati, L. et al. Finite Element Model Prediction of Charge Weld Behaviour in AA6082 and AA6063 Extruded Profiles. J. of Materi Eng and Perform 30, 4691–4699 (2021). https://doi.org/10.1007/s11665-021-05752-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05752-x

Keywords

Navigation