Skip to main content

Advertisement

Log in

Development and Characterization of Zn(98−x).Mg2.(SiC)x Composites Synthesized in Graphite Packed Non-oxidizing Media

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Zinc-based composites have diverse areas of applications; in this context, Zn-Mg-based composite Zn(98−x).Mg2.(SiC)x (x = 0, 2, 4, 6 and 8 wt.%) was synthesized by sintering in non-oxidizing graphite packed media, which can be used as a degradable orthopedic implant. The assessment of mechanical properties, corrosion behavior and localized discharge of zinc ions in simulated body fluid after a certain interval of time was done. The results acquired from various investigations reveal that the composite with Zn92.Mg2.(SiC)6 has a maximum compressive strength of 106 MPa, flexural strength 92 MPa, hardness 55.48 VHN and Young’s modulus 50.353 GPa. The strengthening of the composites was enhanced because of the strain hardening effect of the reinforced SiC particles, which hinders the movement of the dislocations. Surface characteristics and phases evolved in the composite were analyzed by SEM and XRD Technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. R. David, V. Shrivastava, R. Dasgupta, B.K. Prasad and I.B. Singh, Corrosion Investigation of Zinc-Aluminum Alloy (ZA-27) Matrix Reinforced with In Situ Synthesized Titanium Carbide Particle Composites, J. Mater. Eng. Perform., 2019, 28(4), p 2356–2364.

    CAS  Google Scholar 

  2. S.S. Owoeye, D.O. Folorunso, B. Oji and S.G. Borisade, Zinc-Aluminum (ZA-27)-Based Metal Matrix Composites: A Review Article of Synthesis, Reinforcement, Microstructural, Mechanical, and Corrosion Characteristics, , Int. J. Adv. Manuf. Technol., 2018, 100, p 2760–2769.

    Google Scholar 

  3. S.C. Sharma, B.M. Girish, B.M. Satish and R. Kamath, Mechanical Properties of As-Cast and Heat-Treated ZA-27 Alloy/Short Glass Fiber Composites, J. Mater. Eng. Perform., 1998, 7, p 93–99.

    CAS  Google Scholar 

  4. B.K. Prasad, S. Das, O.P. Modi, A.K. Jha, R. Dasgupta and A.H. Yegneswaran, Wear Response of a Zn-Base Alloy in the Presence of SiC Particle Reinforcement: A Comparative Study with a Copper-Base Alloy, J. Mater. Eng. Perform., 1999, 8, p 693–700.

    CAS  Google Scholar 

  5. A. Pola, M. Tocci and F.E. Goodwin, Review of Microstructures and Properties of Zinc Alloys, Metals, 2020, 253(10), p 1–16.

    Google Scholar 

  6. S. Sahu, M.D. Goel, D.P. Mondal and S. Das, High temperature Compressive Deformation Behavior of ZA27-SiC Foam, Mater. Sci. Eng. A, 2014, 607, p 162–172.

    CAS  Google Scholar 

  7. H. Gheisari and E. Karamian, Characterization and Mechanical Behavior of Fly Ash-Alumina Reinforced Zn-27Al Alloy Matrix Hybrid Nano Composite Using Stir-Casting Technique, Int. J. Bio-Inorg. Hybr. Nanomater., 2015, 4(2), p 79–85.

    Google Scholar 

  8. K.K. Alaneme, B.O. Fatile and J.O. Borode, Mechanical and Corrosion Behaviour of Zn-27Al Based Composites Reinforced with Groundnut Shell Ash and Silicon Carbide, Tribol. Ind., 2014, 36(2), p 195–203.

    Google Scholar 

  9. S. Mitrovic, M. Babic and I. Bobic, ZA-27 alloy composites with Al2O3 Particles, Tribol. Ind., 2007, 29(3–4), p 35–41.

    Google Scholar 

  10. B. Bobic, A. Vencl, M. Babic, S. Mitrovic and I. Bobic, The Influence of Corrosion on the Microstructure of Thermally Treated ZA27/SiCp Composites, Tribol. Ind., 2014, 36(1), p 33–39.

    Google Scholar 

  11. B.M. Girish, K.R. Prakash, B.M. Satish, P.K. Jain and K. Devi, Need for Optimization of Graphite Particle Reinforcement in ZA-27 Alloy Composites for Tribological Applications, Mater. Sci. Eng. A, 2011, 530, p 382–388.

    CAS  Google Scholar 

  12. N. Karni, G.B. Barkay and M. Bamberger, Structure and Properties of Metal-Matrix Composites, J. of Mater. Sci. Letter., 1994, 13, p 541–544.

    CAS  Google Scholar 

  13. S. Mitrovic, M. Babic and I. Bobic, ZA-27 Alloy Composites Reinforced with Al2O3 Particles, Tribol. Ind., 2007, 29(3–4), p 35–41.

    Google Scholar 

  14. B. Wattiez, A.F. Gourgues, A. Deschamps, A. Roemer and Z. Zermout, Experimental Investigation of Microstructure and Ageing Behaviour of Bulk Zn-(1-18)wt% Al- (0-0.06)wt% Mg Alloys, Mater. Sci. Eng. A, 2010, 527(29–30), p 7901–7911.

    Google Scholar 

  15. T.J. Chen, Y. Hao, J. Sun and Y.D. Li, Effects of Mg and RE Additions on the Semi-Solid Microstructure of a Zinc Alloy ZA27, Sci. Technol. Adv. Mater., 2003, 4(6), p 495–502.

    CAS  Google Scholar 

  16. T. Gancarz, G. Cempura and W. Skuza, Characterization of ZnAl Cast Alloys with Na Addition, Mater. Charact., 2016, 111, p 147–153.

    CAS  Google Scholar 

  17. B. Bobic, M. Babic, S. Mitrovic, N. Ilic, I. Bobic and M.T. Jovanovic, Microstructure and Mechanical Properties of Zn25Al3Cu Based Composites with Large Al2O3 Particles at Room and Elevated Temperatures, Int. J. Mater. Res., 2010, 12, p 1524–1531.

    Google Scholar 

  18. K.K. Alaneme and O.J. Ajayi, Microstructure and Mechanical Behavior of Stir-Cast Zn-27Al Based Composites Reinforced with Rice Husk Ash, Silicon Carbide, and Graphite, J. King Saud. Univ. Eng. Sci., 2017, 29, p 172–177.

    Google Scholar 

  19. N. Saheb, Z. Iqbal, A. Khalil, A.S. Hakeem, N. Al Aqeeli, T. Laoui, A. Al-Qutub and R. Kirchner, Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review, J. Nanomater., 2012, 18, p 1–13.

    Google Scholar 

  20. R.K. Bhushan and S. Kumar, Influence of SiC Particles Distribution and Their Weight Percentage on 7075 Al Alloy, J. Mater. Eng. Perform., 2011, 20, p 317–323.

    CAS  Google Scholar 

  21. S.C. Sharma, B.M. Girish, R. Kamath and B.M. Satish, Effect of SiC Particle Reinforcement on the Unlubricated Sliding Wear Behavior of ZA-27 Alloy Composites, Wear, 1997, 213, p 33–40.

    CAS  Google Scholar 

  22. S.C. Tjong and F. Chen, Wear Behavior of As-Cast ZnAl27/SiC Particulate Metal-Matrix Composites Under Lubricated Sliding Condition, Metall. Mater. Trans. A., 1997, 28A, p 1951–1955.

    CAS  Google Scholar 

  23. B.K. Prasad, Investigation Into Sliding Wear Performance of Zinc Based Alloy Reinforced with SiC Particles in Dry and Lubricated Conditions, Wear, 2007, 262, p 262–273.

    CAS  Google Scholar 

  24. B.K. Prasad, O.P. Modi and H.K. Khaira, High-Stress Abrasive Wear Behavior of a Zinc-Based Alloy and Its Composite Compared with a Cast Iron Under Varying Track Radius and Load Conditions, Mater. Sci. Eng. A, 2004, 381, p 343–354.

    Google Scholar 

  25. B.K. Prasad, Abrasive Wear Characteristics of a Zinc-Based Alloy and Zinc-Alloy/SiC Composite, Wear, 2002, 252(3–4), p 250–263.

    CAS  Google Scholar 

  26. M. ShahediAsl, Z. Ahmadi, S. Parvizi, Z. Balak and I. Farahbakhsh, Contribution of SiC Particle Size and Spark Plasma Sintering Conditions on Grain Growth and Hardness of TiB2 Composites, Ceram. Int., 2017, 43, p 13924–13931.

    CAS  Google Scholar 

  27. K. Kornaus, G. Grabowski, R. Marian and A. Gubernat, Mechanical Properties of Hot-Pressed SiC-TiC Composites, Process. Appl. Ceram., 2017, 11, p 329–336.

    CAS  Google Scholar 

  28. G.J. Zhang, Z.Z. Jin and X.M. Yue, Reaction Synthesis of TiB2-SiC Composites from TiH2-Si-B4C, Mater. Lett., 1995, 25, p 97–100.

    CAS  Google Scholar 

  29. Y.S. Kang, S.H. Kang and D.J. Kim, Effect of Addition of Cr on the Sintering of TiB2 Ceramics, J. Mater. Sci., 2005, 40, p 4153–4155.

    CAS  Google Scholar 

  30. J. Jaroszewicz and A. Michalski, Preparation of a TiB2 Composite with a Nickel Matrix by Pulse Plasma Sintering with Combustion Synthesis, J. Eur. Ceram. Soc., 2006, 26, p 2427–2430.

    CAS  Google Scholar 

  31. C. Gao, M. Yao, C. Shuaia, S. Pengd and Y. Deng, Nano-SiC Reinforced Zn Biocomposites Prepared Via Laser Melting: Microstructure, Mechanical Properties and Biodegradability, J. Mater. Sci. Technol., 2019, 35, p 2608–2617.

    Google Scholar 

  32. X. Liu, J. Sun, K. Qiu, Y. Yang, Z. Pu, L. Li and Y. Zheng, Effects of Alloying Elements (Ca and Sr) on Microstructure, Mechanical Property and In Vitro Corrosion Behavior of Biodegradable Zn-1.5Mg Alloy, J. Alloys Compd., 2016, 664, p 444–452.

    CAS  Google Scholar 

  33. F. Witte, The History of Biodegradable Magnesium Implants: A Review, Acta Biomater., 2010, 6, p 1680–1692. https://doi.org/10.1016/j.actbio.2015.07.017

    Article  CAS  Google Scholar 

  34. S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang and Y. Bian, Research on an Mg-Zn Alloy as a Degradable Biomaterial, Acta Biomater., 2010, 6, p 626–640. https://doi.org/10.1016/j.actbio.2009.06.028

    Article  CAS  Google Scholar 

  35. N.A.C. Lah and M.H. Hussin, Titanium and Titanium Based Alloys as Metallic Biomaterials in Medical Applications—Spine Implant Case Study Pertanika, J. Sci. Technol., 2019, 27, p 459–472.

    Google Scholar 

  36. J. Vormann, Magnesium: Nutrition and Metabolism, Mol. Asp. Med., 2003, 24, p 27–37.

    CAS  Google Scholar 

  37. T. Juutilainen, H. Pätiälä, M. Ruuskanen and P. Rokkanen, Comparison of Costs in Ankle Fractures Treated with Absorbable or Metallic Fixation Devices, Arch. Orthop. Trauma Surg., 1997, 116, p 204–208.

    CAS  Google Scholar 

  38. Q. Chen and G.A. Thouas, Metallic Implant Biomaterials, Mater. Sci. Eng. R Rep., 2015, 87, p 1–57.

    Google Scholar 

  39. M. Niinomi, Mechanical Biocompatibilities of Titanium Alloys for Biomedical Applications, J. Mech. Behav. Biomed. Mater., 2008, 1, p 30–42.

    Google Scholar 

  40. M. Hambidge, Zinc and Health: Current Status and Future Directions, J. Nutr., 2000, 130, p 1344S-1349S.

    CAS  Google Scholar 

  41. T.M. Bray and W.J. Bettger, The Physiological Role of Zinc as An Antioxidant, Free Radic. Biol. Med., 1990, 8, p 281–291.

    CAS  Google Scholar 

  42. Z.G. Huan, M.A. Leeflang, J. Zhou, L.E. Fratila-Apachitei and J. Duszczyk, In Vitro Degradation Behavior and Cytocompatibility of Mg-Zn-Zr Alloys, J. Mater. Sci. Mater. Med., 2010, 21, p 2623–2635.

    CAS  Google Scholar 

  43. J. Nriagu, Zinc Deficiency in Human Health, Encyclopedia of Environmental Health, 2011, p 789–800. https://doi.org/10.1016/B978-0-444-52272-6.00674-7.

  44. K. Yamaguchi, N. Takakura and S. Imatami, Compaction and Sintering Characteristics of Composite Metal Powders, J. Mater. Process. Technol., 1997, 63, p 364–369.

    Google Scholar 

  45. N.J. Shaw, Densification and Coarsening During Solid State Sintering of Ceramics: A Review of the Models III. Coarsening, Int. J. Powder Metal., 1989, 21, p 25–29.

    CAS  Google Scholar 

  46. D.E. Garcia, A.N. Klein and D. Hotza, Advanced Ceramics with Dense and Fine-Grained Microstructures Through Fast Firing, Rev Adv. Mater. Sci., 2012, 30, p 273–281.

    CAS  Google Scholar 

  47. A. Mostafaei, P.R. De Vecchis, I. Nettleship and M. Chmielus, Effect of Powder Size Distribution on Densification and Microstructural Evolution of Binder-Jet 3D-Printed Alloy 625, Mater. Des., 2019, 162, p 375–383.

    CAS  Google Scholar 

  48. R. Bjork, V. Tikare, H.L. Frandsen and N. Pryds, The Effect of Particle Size Distributions on the Microstructural Evolution During Sintering, J. Am. Ceram. Soc., 2013, 96, p 103–110. https://doi.org/10.1111/jace.12100

    Article  CAS  Google Scholar 

  49. J.W. Kaczmar, K. Pietrzak and W. Wlosinski, Production and Application of Metal Matrix Composite Materials, J. Mater. Process. Technol., 2000, 106, p 58–67.

    Google Scholar 

  50. A. Nouri and C. Wen, Surfactants in Mechanical Alloying/Milling: A Catch-22 Situation, Crit. Rev. Solid State Mater. Sci., 2014, 39, p 81–108.

    CAS  Google Scholar 

  51. E. Reufi and I. Thomas, Evaluation of Modulus of Elasticity by Non-Destructive Method of Hybrid Fiber Reinforced Concrete, Int. J. Adv. Chem. Eng. Biol. Sci., 2016, 3, p 1–4.

    Google Scholar 

  52. T. Kokubo, Bioactive Glass Ceramics: Properties and Applications, Biomaterials, 1991, 39, p 155–163.

    Google Scholar 

  53. J.C. Wurst and J.A. Nelson, Lineal Intercept Technique for Measuring Grain Size in two-Phase Polycrystalline Ceramics, J. Am. Ceram. Soc., 1972, 55, p 109–111.

    CAS  Google Scholar 

  54. H. Tripathi, S.K. Hira, A.S. Kumar, U. Gupta, P.P. Manna and S.P. Singh, Structural Characterization and In Vitro Bioactivity Assessment of SiO2-CaO-P2O5-K2O-Al2O3 Glass as Bioactive Ceramic Material, Ceram. Int., 2015, 41, p 11756–11769.

    CAS  Google Scholar 

  55. H. Rahman and A.H.M. Rashed, Characterization of Silicon Carbide Reinforced Aluminum Matrix Composites, Procedia Eng., 2014, 90, p 103–109.

    CAS  Google Scholar 

  56. Z. Liu, D. Qiu, F. Wang, J.A. Taylor and M. Zhang, Effect of Grain Refinement on Tensile Properties of Cast Zinc Alloys, Metall. Mater. Trans. A, 2016, 47(2), p 830–841.

    CAS  Google Scholar 

  57. R.F. Heary, N. Parvathreddy, S. Sampath and N. Agarwal, Elastic Modulus in the Selection of Interbody Implants, J. Spine Surg., 2017, 3, p 163–167.

    Google Scholar 

  58. H. Zhuang, Y. Han and A. Feng, Preparation, Mechanical Properties and In Vitro Biodegradation of Porous Magnesium Scaffolds, Mater. Sci. Eng. C, 2008, 28, p 1462–1466.

    CAS  Google Scholar 

  59. M. Mouanga, P. Berçot and J.Y. Rauch, Comparison of Corrosion Behaviour of Zinc in NaCl and in NaOH Solutions. Part I: Corrosion Layer Characterization, Corros. Sci., 2010, 52, p 3984–3992.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors deeply acknowledge the financial support of IIT (BHU) Varanasi, India, and MHRD, New Delhi, India, to provide necessary facilities for carrying out research work. Also, the authors acknowledge the DAHDS, Faculty of Agriculture, BHU, Varanasi, India, for support in conducting AAS tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, A., Rai, P., Kumar, V. et al. Development and Characterization of Zn(98−x).Mg2.(SiC)x Composites Synthesized in Graphite Packed Non-oxidizing Media. J. of Materi Eng and Perform 30, 4291–4299 (2021). https://doi.org/10.1007/s11665-021-05726-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05726-z

Keywords

Navigation