Skip to main content
Log in

Influence of Processing Parameters on Surface Properties of SKD61 Steel Processed by Powder Mixed Electrical Discharge Machining

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Many studies have carried out on the characteristics of surfaces processed by PMEDM with various powders. However, limited works have used the tungsten carbide powder in the PMEDM process and investigated its effects on the surface properties. In this research, the influence of main process parameters, including the peak current (Ip), the pulse on time (Ton), and the powder concentration (Cp) on surface properties—i.e., surface roughness (Ra), microhardness of surfaces (HV), and surface morphology of SKD61 steel machined by PMEDM with tungsten carbide powder, was explored in two modes: the fine-finish mode and the semi-finish mode. The results show that the peak current, the pulse on time, and the powder concentration have a noticeable influence on surface properties. The surface roughness, the microhardness of surfaces, and the surface morphology at the small peak current (Ip =1 A) and the short pulse on time (Ton =16 µs) were improved better than those at the large peak current (Ip=4 A) and the long pulse on time (Ton =200 µs) with all powder concentrations. The best improvement of the surface roughness at Ip=1 A; Ton=16 μs; Cp=40 g/l is 0.471 ± 0.011µm with a reduction of 57.984% as compared to the normal EDM. The set of processing parameters {Ip=1 A; Ton=16 μs; Cp=60 g/l} has the most positive effect on the improvement of microhardness and surface morphology: The microhardness was enhanced up to 825 ± 19 HV with an increase of 129.167% as compared to the normal EDM. The surface morphology had the smooth surface, the few micro-cracks, the few voids, the few droplets, and the few globules of debris as compared to that of other process parameters and the normal EDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

I p :

Peak current (A)

T on :

Pulse on time (μs)

T off :

Pulse off time (μs)

C p :

Concentration of powder (g/l

EDM:

Electrical discharge machining

PMEDM:

Powder mixed electrical discharge machining

MRR:

Material removal rate

EWR:

Electrode wear ratio

TWR:

Tool wear rate

MDR:

Material deposition rate

RLT:

Recast layer thickness

EDX:

Energy-dispersive x-ray spectroscopy

SEM:

Scanning Electron Microscope

References

  1. K. Furutani, A. Saneto, H. Takezawa, N. Mohri and H. Miyake, Accretion of Titanium Carbide by Electrical Discharge Machining with Powder Suspended in Working Fluid, Precis. Eng., 2001, 25, p 138–144. https://doi.org/10.1016/S0141-6359(00)00068-4

    Article  Google Scholar 

  2. C. Prakash, H.K. Kansal, B.S. Pabla, S. Puri and A. Aggarwal, Electric Discharge Machining–A Potential Choice for Surface Modification of Metallic Implants for Orthopedic Applications: A Review, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2016, 230(2), p 331–353.

    Article  CAS  Google Scholar 

  3. K. Yanatori and M. Kunieda, Study on Debris Movement in EDM Gap, J. Japan Soc. Electr. Mach. Eng., 1995, 29(61), p 19–27. https://doi.org/10.2526/jseme.29.61_19

    Article  Google Scholar 

  4. G.S. Prihandana, M. Mahardika, M. Hamdi, Y.S. Wong and K. Mitsui, Accuracy Improvement in Nanographite Powder-Suspended Dielectric Fluid for Micro-Electrical Discharge Machining Processes, Int. J. Adv. Manuf. Technol., 2011, 56(1–4), p 143–149. https://doi.org/10.1007/s00170-011-3152-6

    Article  Google Scholar 

  5. G. Talla, S. Gangopadhyay and C.K. Biswas, Effect of Powder-Suspended Dielectric on the EDM Characteristics of Inconel 625, J. Mater. Eng. Perform., 2016, 25(2), p 704–717. https://doi.org/10.1007/s11665-015-1835-0

    Article  CAS  Google Scholar 

  6. S. Sundriyal, J. Yadav and R.S. Walia, Thermophysical-Based Modeling of Material Removal in Powder Mixed Near-Dry Electric Discharge Machining, J. Mater. Eng. Perform., 2020, 29, p 6550–6569. https://doi.org/10.1007/s11665-020-05110-3

    Article  CAS  Google Scholar 

  7. X. Wang, C. Li, H. Guo, S. Yi, L. Kong and S. Ding, Alternating Energy Electrical Discharge Machining of Titanium Alloy Using a WC-PCD Electrode, J. Manuf. Process., 2020, 60, p 37–47. https://doi.org/10.1016/j.jmapro.2020.10.034

    Article  Google Scholar 

  8. W.S. Zhao, Q.G. Meng and Z.L. Wang, The Application of Research on Powder Mixed EDM in Rough Machining, J. Mater. Process. Technol., 2002, 129(1–3), p 30–33. https://doi.org/10.1016/S0924-0136(02)00570-8

    Article  Google Scholar 

  9. X. Wang, Y. Liu, Y. Zhang, Q. Sun and Z. Li, Characteristics of Plasma Channel in Powder-Mixed EDM Based on Monopulse Discharge, Int. J. Adv. Manuf. Technol., 2016, 82, p 1063–1069. https://doi.org/10.1007/s00170-015-7236-6

    Article  Google Scholar 

  10. G. Talla, S. Gangopadhayay and C.K. Biswas, State of the Art in Powder-Mixed Electric Discharge Machining: A Review, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2017, 231(14), p 2511–2526. https://doi.org/10.1177/0954405416634265

    Article  Google Scholar 

  11. T. Jadam, S.K. Sahu, S. Datta and M. Masanta, EDM Performance of Inconel 718 Superalloy: Application of Multi-Walled Carbon Nanotube (MWCNT) Added Dielectric Media, J. Brazil. Soc. Mech. Sci. Eng., 2019, 41(8), p 305. https://doi.org/10.1007/s40430-019-1813-9

    Article  CAS  Google Scholar 

  12. S. Kumar, R. Singh, A. Batish, T.P. Singh and R. Singh, Investigating Surface Properties of Cryogenically Treated Titanium Alloys in Powder Mixed Electric Discharge Machining, J. Brazil. Soc. Mech. Sci. Eng., 2017, 39(7), p 2635–2648. https://doi.org/10.1007/s40430-016-0639-y

    Article  CAS  Google Scholar 

  13. H. Marashi, D.M. Jafarlou, A.A.D. Sarhan and M. Hamdi, State of the Art in Powder Mixed Dielectric for EDM Applications, Precis. Eng., 2016, 46, p 11–33. https://doi.org/10.1016/j.precisioneng.2016.05.010

    Article  Google Scholar 

  14. A. Erden, S. Bilgin, Role of impurities in electric discharge machining, in Proceedings of 21st International Machine Tool Design and Research Conference, 1981, pp 345–350. https://doi.org/https://doi.org/10.1007/978-1-349-05861-7_45

  15. J.E. Abu Qudeiri, A. Saleh, A. Ziout, A.H.I. Mourad, M.H. Abidi and A. Elkaseer, Advanced electric discharge machining of stainless steels: Assessment of the state of the art, gaps and future prospect, Materials, 2019, 12(6), p 907. https://doi.org/10.3390/ma12060907

    Article  CAS  Google Scholar 

  16. M. Al-Amin, A.M.A. Rani, A.A.A. Aliyu, M.A.A. Razak, S. Hastuty and M.G. Bryant, Powder Mixed-EDM for Potential Biomedical Applications: A Critical Review, Mater. Manuf. Processes., 2020, 35(16), p 1789–1811. https://doi.org/10.1080/10426914.2020.1779939

    Article  CAS  Google Scholar 

  17. T.D. Nguyen, P.H. Nguyen and L.T. Banh, Die Steel Surface Layer Quality Improvement in Titanium Μ -Powder Mixed Die Sinking Electrical Discharge Machining, Int. J. Adv. Manuf. Technol., 2018, 100, p 2637–2651. https://doi.org/10.1007/s00170-018-2887-8

    Article  Google Scholar 

  18. H. Marashi, A.A.D. Sarhan and M. Hamdi, Employing Ti Nano-Powder Dielectric to Enhance Surface Characteristics in Electrical Discharge Machining of AISI D2 Steel, Appl. Surf. Sci., 2015, 357, p 892–907. https://doi.org/10.1016/j.apsusc.2015.09.105

    Article  CAS  Google Scholar 

  19. Y. Chen and Y. Lin, Surface Modifications of Al–Zn–Mg Alloy Using Combined EDM with Ultrasonic Machining and Addition of TiC Particles into the Dielectric, J. Mater. Process. Technol., 2009, 209, p 4343–4350. https://doi.org/10.1016/j.jmatprotec.2008.11.013

    Article  CAS  Google Scholar 

  20. S. Tripathy and D.K. Tripathy, Multi-Attribute Optimization of Machining Process Parameters in Powder Mixed Electro-Discharge Machining Using TOPSIS and Grey Relational Analysis, Eng. Sci. Technol. Int. J., 2016, 19(1), p 62–70. https://doi.org/10.1016/j.jestch.2015.07.010

    Article  Google Scholar 

  21. S. Tripathy and D. Tripathy, An Approach for Increasing the Micro-Hardness in Electrical Discharge Machining by Adding Conductive Powder to the Dielectric, Mater. Today Proc., 2017, 4(2), p 1215–1224. https://doi.org/10.1016/j.matpr.2017.01.140

    Article  Google Scholar 

  22. C. Prakash, H.K. Kansal, B.S. Pabla and S. Puri, Experimental Investigations in Powder Mixed Electric Discharge Machining of Ti–35Nb–7Ta–5Zrβ-Titanium Alloy, Mater. Manuf. Processes., 2017, 32(3), p 274–285. https://doi.org/10.1080/10426914.2016.1198018

    Article  CAS  Google Scholar 

  23. L. Li, L. Zhao, Z.Y. Li, L. Feng and X. Bai, Surface Characteristics of Ti-6Al-4V by SiC Abrasive-Mixed EDM with Magnetic Stirring, Mater. Manuf. Processes., 2017, 32(1), p 83–86. https://doi.org/10.1080/10426914.2016.1151043

    Article  CAS  Google Scholar 

  24. S. Kumar Sahu, T. Jadam, S. Datta, D. Dhupal and G. Nandi, Application of SiC Power Added in Kerosene Dielectric Media for Electro-Discharge Machining of Inconel 718 Super Alloys: Effect of Powder Concentration, Mater. Today Proc., 2018, 5(9), p 20297–20305. https://doi.org/10.1016/j.matpr.2018.06.402

    Article  CAS  Google Scholar 

  25. A. Al-Khazraji, S.A. Amin and S.M. Ali, The Effect of SiC Powder Mixing Electrical Discharge Machining on White Layer Thickness, Heat Flux and Fatigue Life of AISI D2 Die Steel, Eng. Sci. Technol. an Int. J., 2016, 19(3), p 1400–1415. https://doi.org/10.1016/j.jestch.2016.01.014

    Article  Google Scholar 

  26. T.T. Öpöz, H. Yaşar, N. Ekmekci and B. Ekmekci, Particle Migration and Surface Modification on Ti6Al4V in SiC Powder Mixed Electrical Discharge Machining, J. Manuf. Process., 2018, 31, p 744–758. https://doi.org/10.1016/j.jmapro.2018.01.002

    Article  Google Scholar 

  27. A.K. Rouniyar and P. Shandilya, Experimental Investigation on Recast Layer and Surface Roughness on Aluminum 6061 Alloy During Magnetic Field Assisted Powder Mixed Electrical Discharge Machining, J. Mater. Eng. Perform., 2020 https://doi.org/10.1007/s11665-020-05244-4

    Article  Google Scholar 

  28. F.L. Amorim, V.A. Dalcin, P. Soares and L.A. Mendes, Surface Modification of Tool Steel by Electrical Discharge Machining with Molybdenum Powder Mixed in Dielectric Fluid, Int. J. Adv. Manuf. Technol., 2017, 91(1–4), p 341–350. https://doi.org/10.1007/s00170-016-9678-x

    Article  Google Scholar 

  29. R. Świercz and D. Oniszczuk-świercz, The Effects of Reduced Graphene Oxide Flakes in the Dielectric on Electrical Discharge Machining, Nanomaterials, 2019, 9(3), p 1–16. https://doi.org/10.3390/nano9030335

    Article  CAS  Google Scholar 

  30. M. Shabgard and B. Khosrozadeh, Investigation of Carbon Nanotube Added Dielectric on the Surface Characteristics and Machining Performance of Ti–6Al–4V Alloy in EDM Process, J. Manuf. Process., 2017, 25, p 212–219. https://doi.org/10.1016/j.jmapro.2016.11.016

    Article  Google Scholar 

  31. M.M. Hossain, M.S.B.A. Karim, W.Y. Hoong, M.H.B.A. Shukor and M.S.B.A. Talip, Feasibility of Using CeO 2 / Water Dielectrical Nanofluid in Electrical Discharge Machining ( EDM ), Arab. J. Sci. Eng., 2020, 45, p 5435–5445. https://doi.org/10.1007/s13369-020-04404-x

    Article  CAS  Google Scholar 

  32. G.S. Prihandana, M. Mahardika, M. Hamdi, Y.S. Wong and K. Mitsui, Effect of Micro-Powder Suspension and Ultrasonic Vibration of Dielectric Fluid in Micro-EDM Processes—Taguchi Approach, Int. J. Mach. Tools Manuf., 2009, 49(12–13), p 1035–1041. https://doi.org/10.1016/j.ijmachtools.2009.06.014

    Article  Google Scholar 

  33. B. Jabbaripour, M. Hossein, M. Reza and H. Faraji, Investigating Surface Roughness, Material Removal Rate and Corrosion Resistance in PMEDM of γ-TiAl Intermetallic, J. Manuf. Process., 2013, 15(1), p 56–68. https://doi.org/10.1016/j.jmapro.2012.09.016

    Article  Google Scholar 

  34. S. Kumar and U. Batra, Surface Modification of Die Steel Materials by EDM Method Using Tungsten Powder-Mixed Dielectric, J. Manuf. Process., 2012, 14(1), p 35–40. https://doi.org/10.1016/j.jmapro.2011.09.002

    Article  Google Scholar 

  35. A. Bhattacharya, A. Batish and N. Kumar, Surface Characterization And Material Migration During Surface Modification of Die Steels With Silicon, Graphite And Tungsten Powder in EDM Process, J. Mech. Sci. Technol., 2013, 27(1), p 133–140. https://doi.org/10.1007/s12206-012-0883-8

    Article  Google Scholar 

  36. R. Tyagi, A.K. Das and A. Mandal, Electrical Discharge Coating Using Ws2 and Cu Powder Mixture for Solid Lubrication and Enhanced Tribological Performance, Tribol. Int., 2018, 120, p 80–92. https://doi.org/10.1016/j.triboint.2017.12.023

    Article  CAS  Google Scholar 

  37. K.L. Wu, B.H. Yan, F.Y. Huang and S.C. Chen, Improvement of Surface Finish on SKD Steel Using Electro-Discharge Machining with Aluminum and Surfactant Added Dielectric, Int. J. Mach. Tools Manuf., 2005, 45, p 1195–1201. https://doi.org/10.1016/j.ijmachtools.2004.12.005

    Article  Google Scholar 

  38. H.R. Fazli Shahri, R. Mahdavinejad, M. Ashjaee and A. Abdullah, A Comparative Investigation on Temperature Distribution in Electric Discharge Machining Process Through Analytical, Numerical And Experimental Methods, Int. J. Mach. Tools Manuf., 2017, 114, p 35–53. https://doi.org/10.1016/j.ijmachtools.2016.12.005

    Article  Google Scholar 

  39. J. Wang and F. Han, Simulation Model of Debris and Bubble Movement in Consecutive-Pulse Discharge of Electrical Discharge Machining, Int. J. Mach. Tools Manuf., 2014, 77, p 56–65. https://doi.org/10.1016/j.ijmachtools.2013.10.007

    Article  Google Scholar 

  40. Y.S. Wong, L.C. Lim, I. Rahuman and W.M. Tee, Near-Mirror-Finish Phenomenon in EDM Using Powder-Mixed Dielectric, J. Mater. Process. Technol., 1998, 79(1–3), p 30–40. https://doi.org/10.1016/S0924-0136(97)00450-0

    Article  Google Scholar 

  41. Y.F. Luo, The Dependence of Interspace Discharge Transitivity Upon the Gap Debris in Precision Electrodischarge Machining, J. Mater. Process. Technol., 1997, 68(2), p 121–131. https://doi.org/10.1016/S0924-0136(96)00019-2

    Article  Google Scholar 

  42. Y.F. Tzeng and C.Y. Lee, Effects of Powder Characteristics on Electro Discharge Machining Efficiency, Int. J. Adv. Manuf. Technol., 2001, 17, p 586–592. https://doi.org/10.1007/s001700170142

    Article  Google Scholar 

  43. M. Shabgard, S.N.B. Oliaei, M. Seyedzavvar and A. Najadebrahimi, Experimental Investigation and 3D Finite Element Prediction of the White Layer Thickness, Heat Affected Zone, and Surface Roughness in EDM Process, J. Mech. Sci. Technol., 2011, 25(12), p 3173–3183. https://doi.org/10.1007/s12206-011-0905-y

    Article  Google Scholar 

  44. S. Jithin, A. Raut, U.V. Bhandarkar and S.S. Joshi, Finite Element Model for Topography Prediction of Electrical Discharge Textured Surfaces Considering Multi-Discharge Phenomenon, Int. J. Mech. Sci., 2020, 177, p 105604. https://doi.org/10.1016/j.ijmecsci.2020.105604

    Article  Google Scholar 

  45. X. Feng, Y.S. Wong and G.S. Hong, Characterization and Geometric Modeling of Single And Overlapping Craters in Micro-EDM, Mach. Sci. Technol., 2016, 20(1), p 79–81. https://doi.org/10.1080/10910344.2015.1085317

    Article  Google Scholar 

  46. K. Salonitis, A. Stournaras, P. Stavropoulos and G. Chryssolouris, Thermal Modeling of the Material Removal Rate and Surface Roughness for Die-Sinking EDM, Int. J. Adv. Manuf. Technol., 2009, 40(3–4), p 316–323. https://doi.org/10.1007/s00170-007-1327-y

    Article  Google Scholar 

  47. S.N. Joshi and S.S. Pande, Thermo-Physical Modeling of Die-Sinking EDM Process, J. Manuf. Process., 2010, 12(1), p 45–56. https://doi.org/10.1016/j.jmapro.2010.02.001

    Article  Google Scholar 

  48. M. Kolli and A. Kumar, Surfactant and graphite powder-assisted electrical discharge machining of titanium alloy, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2017, 231(4), p 641–657. https://doi.org/10.1177/0954405415579019

    Article  CAS  Google Scholar 

  49. V. Prakash, S.P. Kumar, P.K. Singh, A.K. Das, S. Chattopadhyaya, A. Mandal and A.R. Dixit, Surface Alloying of Miniature Components by Micro-Electrical Discharge Process, Mater. Manuf. Process., 2018, 33(10), p 1051–1061. https://doi.org/10.1080/10426914.2017.1364755

    Article  CAS  Google Scholar 

  50. H.T. Lee and T.Y. Tai, Relationship Between EDM Parameters and Surface Crack Formation, J. Mater. Process. Technol., 2003, 142, p 676–683. https://doi.org/10.1016/S0924-0136(03)00688-5

    Article  CAS  Google Scholar 

  51. D.R. Askelan, P.P. Phule and W.J. Wright, The Science and Engineering of Materials, 6th ed. Thomson Brook/Cole, San Francisco, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Tao Le.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, V.T. Influence of Processing Parameters on Surface Properties of SKD61 Steel Processed by Powder Mixed Electrical Discharge Machining. J. of Materi Eng and Perform 30, 3003–3023 (2021). https://doi.org/10.1007/s11665-021-05584-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05584-9

Keywords

Navigation