Skip to main content
Log in

Investigation of Viton O-Ring Performance for the SABRE Dark Matter Experiment

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Viton O-rings will be used for critical seals of the liquid scintillator veto detector for the sodium iodide with active background rejection dark matter experiment in Australia. In this study, the combined effects of elevated temperature plus exposure to air and linear alkyl benzene (LAB) on the physical and chemical properties of Viton O-rings were investigated over time using compression set measurements and Young’s modulus tests, ATR-FTIR spectroscopy and the analysis of solvent-induced swelling. The measurements show the degradation of physical and mechanical properties of the Viton O-rings was found to be more pronounced under compression set conditions in air for the same temperature compared to LAB at the same temperatures. The ATR-FTIR results show that the effects of LAB on the surface composition of the Viton O-rings were not significant. According to solvent swelling analysis over time, the Viton O-rings are suitable for use with LAB as there were no obvious physical and chemical property degradations at three different ageing temperatures (22, 35 and 55 ºC). Furthermore, the overall conclusion is that the O-rings can be expected to function efficiently for much longer than the expected operating life of the SABRE experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.L. Logothetis, Chemistry of Fluorocarbon Elastomers, Prog. Polym. Sci., 1989, 14(2), p 251–296

    Article  CAS  Google Scholar 

  2. H. Schroeder, Fluorocarbon Elastomers, Rubber Technol., 1999, 2(8), p 410–437

    Article  Google Scholar 

  3. S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, K. Almdal, H.K. Rehmeier, and A.G. Christensen, Chemical Degradation of Fluoroelastomer in an Alkaline Environment, Polym. Degrad. Stab., 2004, 83(2), p 195–206

    Article  CAS  Google Scholar 

  4. A. Kömmling, M. Jaunich, P. Pourmand, D. Wolff, and U.W. Gedde, Influence of Ageing on Sealability of Elastomeric O-Rings, Macromol. Symp., 2017, 373(1), p 1–10

    Article  Google Scholar 

  5. Wikipedia, “Viton - Wikipedia,” From Wikipedia, the free encyclopedia Jump to navigationJump to search, 2019, https://en.wikipedia.org/wiki/Viton#cite_ref-1. Accessed 26 June 2019.

  6. G. Item, K. Words, and E. Date, Acceptance Criteria Acceptance Criteria, 2007.

  7. J.G. Drobny, Compounds for O-Rings and Molded Goods, Fluoroelastomers Handbook, 2nd ed., Elsevier, 2016, p 439–470, https://doi.org/10.1016/b978-0-323-39480-2.00012-9.

  8. P.B. Wagh, S.V. Ingale, R. Kumar, R.H. Naina, T.C. Kaushik, and S.C. Gupta, Impact Sensitivity of RDX and Viton Compositions Prepared by Co-Precipitation Method, Def. Sci. J., 2015, 65(4), p 287–291

    Article  CAS  Google Scholar 

  9. N.G. Shimpi, A.D. Mali, and S. Mishra, Property Investigation of Surface-Modified MMT on Mechanical and Photo-Oxidative Degradation of Viton Rubber Composites, Polym. Bull., 2016, 73(11), p 3033–3048

    Article  CAS  Google Scholar 

  10. A. Kömmling, M. Jaunich, and D. Wolff, Ageing of HNBR, EPDM and FKM O-Rings, KGK Kautschuk Gummi Kunststoffe, 2016, 69(4), p 36–42

    Google Scholar 

  11. L.J. Bignell, E. Barberio, M.B. Froehlich, G.J. Lane, O. Lennon, I. Mahmood, F. Nuti, M.S. Rahman, C. Simenel, N.J. Spinks, A.E. Stuchbery, H. Timmers, A. Wallner, L. Wang, J. Wu, and Y.Y. Zhong, SABRE and the Stawell Underground Physics Laboratory Dark Matter Research at the Australian National University, EPJ Web Conf., 2020, 232, p 01002

    Article  CAS  Google Scholar 

  12. P. Montini, Dark Matter Search with the SABRE Experiment, Instrum. Detect., 2018, 10, p 5–8. https://doi.org/10.1088/1742-6596/1342/1/012060

    Article  CAS  Google Scholar 

  13. M. Antonello, E. Barberio, T. Baroncelli, J. Benziger, L.J. Bignell, I. Bolognino, F. Calaprice, S. Copello, D. D’Angelo, G. D’Imperio, I. Dafinei, G. Di Carlo, M. Diemoz, A. Di Ludovico, W. Dix, A.R. Duffy, F. Froborg, G.K. Giovanetti, E. Hoppe, A. Ianni, L. Ioannucci, S. Krishnan, G.J. Lane, I. Mahmood, A. Mariani, M. Mastrodicasa, P. Montini, J. Mould, F. Nuti, D. Orlandi, et al., The SABRE Project and the SABRE Proof-of-Principle. Eur. Phys. J. C, 2019, 79(4).

  14. R. P. Brown, and J. H. Greenwood, Practical Guide to the Assessment of the Useful Life of Plastics, 2002.

  15. A. Kömmling, D. Wolff, and M. Jaunich, Investigation of Long-Term Behaviour of Elastomeric Seals for Transport and Storage Packages, The Ageing of Materials and Structures, K. van Breugel, D. Koleva, T. Beek, Eds., Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-70194-3_2.

  16. C.S. Woo and H.S. Park, Useful Lifetime Prediction of Rubber Component, Eng. Fail. Anal., 2011, 18(7), p 1645–1651. https://doi.org/10.1016/j.engfailanal.2011.01.003

    Article  CAS  Google Scholar 

  17. R.D. Stevens, Permeation and Stress Relaxation Resistance of Elastomeric Fuel Seal Materials. SAE Tech., 2001, 110, p 869–879.

  18. S. Salehi, C.P. Ezeakacha, G. Kwatia, R. Ahmed, and C. Teodoriu, Performance Verification of Elastomer Materials in Corrosive Gas and Liquid Conditions, Polym. Test., 2019, 75, p 48–63. https://doi.org/10.1016/j.polymertesting.2019.01.015

    Article  CAS  Google Scholar 

  19. W. Lou, W. Zhang, T. Jin, X. Liu, and W. Dai, Synergistic Effects of Multiple Environmental Factors on Degradation of Hydrogenated Nitrile Rubber Seals, Polymers (Basel), 2018, 10(8), p 897

    Article  Google Scholar 

  20. W. Lou, W. Zhang, H. Wang, T. Jin, and X. Liu, Influence of Hydraulic Oil on Degradation Behavior of Nitrile Rubber O-Rings at Elevated Temperature, Eng. Fail. Anal., 2018, 92, p 1–11. https://doi.org/10.1016/j.engfailanal.2018.05.006

    Article  CAS  Google Scholar 

  21. T.W. GIANTS, “Vitron B O-Ring Resilience Study.Pdf,” (Los Angeles), 2001. https://apps.dtic.mil/dtic/tr/fulltext/u2/a402958.pdf.

  22. L. Lukács and E. Cséfalvay, Compatibility Study of Viton, NBR 70 and EPDM O-Rings with Selected Solvents, Period. Polytech. Chem. Eng., 2017, 61(2), p 67–72

    Google Scholar 

  23. T. Sugama, T. Pyatina, E. Redline, J. Mcelhanon, and D. Blankenship, Evaluation of the Performance of O-Rings Made with Different Elastomeric Polymers in Simulated Geothermal Environments at 300°C, 2014. https://www.bnl.gov/isd/documents/88370.pdf.

  24. M. Jaunich, W. Stark, and D. Wolff, Comparison of Low Temperature Properties of Different Elastomer Materials Investigated by a New Method for Compression Set Measurement, Polym. Test, 2012, 31(8), p 987–992. https://doi.org/10.1016/j.polymertesting.2012.07.016

    Article  CAS  Google Scholar 

  25. P.R. Morrell, M. Patel, and A.R. Skinner, Accelerated Thermal Ageing Studies on Nitrile Rubber O-Rings, Polym. Test., 2003, 22(6), p 651–656

    Article  CAS  Google Scholar 

  26. M.D. Kass, S.J. Pawel, T.J. Theiss, and C.J. Janke, Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-Blended Gasoline, 2012. https://doi.org/10.2172/1039968.

  27. A. Kömmling, M. Jaunich, and D. Wolff, Revealing Effects of Chain Scission during Ageing of EPDM Rubber Using Relaxation and Recovery Experiment, Polym. Test., 2016, 56, p 261–268

    Article  Google Scholar 

  28. A. Kömmling, M. Jaunich, and D. Wolff, Effects of Heterogeneous Aging in Compressed HNBR and EPDM O-Ring Seals, Polym. Degrad. Stab., 2016, 126, p 39–46

    Article  Google Scholar 

  29. I. Repository, Study of Stress Relaxation and Strain Recovery in Elastomeric Compounds Used in Pipe Seals, A. M. Prabhu, 1991. https://hdl.handle.net/2134/25928.

  30. Y.-H. Qian, H.-Z. Xiao, M.-H. Nie, Y.-H. Zhao, Y.-B. Luo, and S.-L. Gong, Lifetime Prediction of Nitrile Rubber under Compression Stress in Transformer Oil, 2016, (Icmia), p 189–194.

  31. R. Padakan and S. Radagan, Evaluation of Benzenesulfonyl Hydrazide Concentration on Mechanical Properties, Swelling and Thermal Conductivity of Thermal Insulation from Natural Rubber, Agric. Nat. Resour., 2016, 50(3), p 220–226. https://doi.org/10.1016/j.anres.2016.01.004

    Article  CAS  Google Scholar 

  32. J. Joutsenvaara and K. Loo, Analysis of Linear Alkylbenzene Samples with a Camera-Based Equipment, 2017.

  33. I.B. Nemchenok, V.I. Babin, V.B. Brudanin, O.I. Kochetov, and V.V. Timkin, Liquid Scintillator Based on Linear Alkylbenzene, Phys. Part. Nucl. Lett., 2011, 8(2), p 129–135

    Article  CAS  Google Scholar 

  34. S.T. Methods, D395-14: Standard Test Methods for Rubber Property — Compression Set 1, Current, 2003, 09(Reapproved 2008), p 1–6.

  35. ASTM D471-16a, Standard Test Method for Rubber Property—Effect of Liquids, ASTM Int., 2016, i, p 1–14. https://doi.org/10.1520/D0471-16A

    Article  Google Scholar 

  36. ASTM D 412-06a, Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers— Tension, ASTM Int., 2018, 598, p 143–152. https://doi.org/10.1007/978-3-319-60011-6_14

    Article  Google Scholar 

  37. M. Jaunich, A. Kömmling, and D. Wolff, Investigations of Elastomeric Seals—Low-Temperature Performance and Ageing Behaviour. Deformation and Fracture Behaviour of Polymer Materials, Springer Series in Materials Science, Vol 247, W. Grellmann, B. Langer, Eds., Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-41879-7_30.

  38. V. Plaček, T. Kohout, V. Hnát, and B. Bartoníček, Assessment of the EPDM Seal Lifetime in Nuclear Power Plants, Polym. Test., 2009, 28(2), p 209–214

    Article  Google Scholar 

  39. M. Jaunich, W. Stark, and D. Wolff, A New Method to Evaluate the Low Temperature Function of Rubber Sealing Materials, Polym. Test., 2010, 29(7), p 815–823. https://doi.org/10.1016/j.polymertesting.2010.07.006

    Article  CAS  Google Scholar 

  40. M.S. Rahman, U. Shaislamov, J.K. Yang, J.K. Kim, Y.H. Yu, S. Choi, and H.J. Lee, Effects of Electron Beam Irradiation on Tribological and Physico-Chemical Properties of Polyoxymethylene Copolymer (POM-C), Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 2016, 387, p 54–62. https://doi.org/10.1016/j.nimb.2016.10.001

    Article  CAS  Google Scholar 

  41. J.A. Hiltz, Characterization of Fluoroelastomers by Various Analytical Techniques Including Pyrolysis Gas Chromatography/Mass Spectrometry, J. Anal. Appl. Pyrolysis, 2014, 109, p 283–295

    Article  CAS  Google Scholar 

  42. D. University of California, “Infrared Spectroscopy Absorption Table - Chemistry LibreTexts,” 2019, https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Spectroscopic_Parameters/Infrared_Spectroscopy_Absorption_Table. Accessed 9 July 2019.

  43. S. Zor, B. Yazici, and M. Erbil, Inhibition Effects of LAB and LABS on Iron Corrosion in Chlorine Solutions at Different Temperatures, Corros. Sci., 2005, 47(11), p 2700–2710

    Article  CAS  Google Scholar 

  44. M.A. Mottaleb, Development of a HPLC Method for Analysis of Linear Alkylbenzene Sulphonates and Detection by UV and FTIR Spectroscopy Using Thermospray Interface, Mikrochim. Acta, 1999, 132(1), p 31–39

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial and intellectual support toward this research project from the Department of Nuclear Physics, the Australian National University (ANU) and the University of New South Wales (UNSW). Authors are thankful to Dr. Ali Ameri, UNSW, for experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Shahinur Rahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.S., Hutchison, W.D., Bignell, L.J. et al. Investigation of Viton O-Ring Performance for the SABRE Dark Matter Experiment. J. of Materi Eng and Perform 29, 8359–8369 (2020). https://doi.org/10.1007/s11665-020-05259-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05259-x

Keywords

Navigation